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Abstract

In many applications of probabilistic inference the models contain piecewise densities
that are differentiable except at partition boundaries. For instance, (1) some mod-
els may intrinsically have finite support, being constrained to some regions; (2) arbi-
trary density functions may be approximated by mixtures of piecewise functions such
as piecewise polynomials or piecewise exponentials; (3) distributions derived from
other distributions (via random variable transformations) may be highly piecewise;
(4) in applications of Bayesian inference such as Bayesian discrete classification and
preference learning, the likelihood functions may be piecewise; (5) context-specific
conditional probability density functions (tree-CPDs) are intrinsically piecewise; (6)
influence diagrams (generalizations of Bayesian networks in which along with prob-
abilistic inference, decision making problems are modeled) are in many applications
piecewise; (7) in probabilistic programming, conditional statements lead to piecewise
models. As we will show, exact inference on piecewise models is not often scalable (if
applicable) and the performance of the existing approximate inference techniques on
such models is usually quite poor.

This thesis fills this gap by presenting scalable and accurate algorithms for infer-
ence in piecewise probabilistic graphical models. Our first contribution is to present a
variation of Gibbs sampling algorithm that achieves an exponential sampling speedup
on a large class of models (including Bayesian models with piecewise likelihood func-
tions). As a second contribution, we show that for a large range of models, the time-
consuming Gibbs sampling computations that are traditionally carried out per sam-
ple, can be computed symbolically, once and prior to the sampling process. Among
many potential applications, the resulting symbolic Gibbs sampler can be used for fully
automated reasoning in the presence of deterministic constraints among random vari-
ables. As a third contribution, we are motivated by the behavior of Hamiltonian dy-
namics in optics —in particular, the reflection and refraction of light on the refractive
surfaces— to present a new Hamiltonian Monte Carlo method that demonstrates a
significantly improved performance on piecewise models.

Hopefully, the present work represents a step towards scalable and accurate infer-
ence in an important class of probabilistic models that has largely been overlooked in
the literature.
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Chapter 1

Introduction

1.1 Motivation

Reasoning under uncertainty is an indispensable part of a large range of real-world
application domains. In such inference tasks, it is required to predict the future state
of the world and/or actions that lead to maximum gains based on some incomplete
or uncertain information and partial/noisy observations. For instance, an optical
character recognition system may encounter an ambiguous input glyph which can
be mapped to more than one alphabet letter or a robot may requrie finding its goal
given input signals received from its noisy sensors.

Statistical inference, based on probability theory, provides a natural and robust
formalism for such reasoning tasks. The advent of graphical models (GMs) has (1)
provided systematic methods to represent complex distributions in succinct and com-
pact forms and (2) facilitated the extraction of structured information such as condi-
tional dependencies of random variables. By exploiting such structures, GMs have (3)
led to scalable and effective inference algorithms. Finally, by separating model repre-
sentation from the inference, (4) GMs have enabled the users (e.g. data scientists) to
focus on the design of appropriate models for the systems about which they intend
to carry out inference while letting the actual reasoning task be performed by gen-
eral and automated reasoning mechanisms. As a result, GMs have vastly expanded
the application domains in which probabilistic reasoning can be effectively used and
consequently, have become a fundamental model of machine learning and artificial
intelligence.

Despite a relatively long history of probabilistic reasoning that can be traced back
to sixteenth and seventeenth centuries [Hald 2003], for a long time, its use has been
almost exclusively restricted to simple models which had closed-form solutions that
could be worked out manually. Luckily, the rapid growth in the processing power
of computers has changed the situation and led to the emergence of a range of ap-
proximate inference algorithms that can handle a large range of models for which
manual inference is intractable or impossible. In particular, particle-based algorithms
–i.e. methods in which the original distribution is approximated by (a Markov chain
of) samples– are appealing because they are asymptotically unbiased in the sense that
if the number of sampled particles tends to infinity, the distribution approximation
error tends to zero.

1
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Figure 1.1: Irwin-Hall probability density functions for parameter n = 1, 2, and 3.

However, the convergence rate of the particle based algorithms and in a broader
view, the performance of all approximate inference methods can significantly depend
on the characteristics of the original model. In particular, the performance of the
existing approximate inference algorithms on piecewise models is often quite poor.
Throughout, by piecewise models, we refer to models with probability density func-
tions which are continuous and differentiable except at piecewise partition bound-
aries. Such models have several applications.

In the remaining part of this subsection, we provide some pervasive application
domains associated with models that are intrinsically piecewise.

1.1.1 Bounded support models

In many models, distributions have bounded support. As a result, some parametric
distributions1 that are extensively used in the literature are supported on semi-infinite
intervals, such as the following: Beta prime, Chi, gamma and exponential distributions.

Some other well-known continuous distributions have bounded supports, such as:
Uniform, U-quadratic, beta, logitnormal, reciprocal, raised cosine, Von Mises, Kent, Wigner
semicircle distributions, etc.

Finally, among bounded support distributions, some like the following are piece-
wise with more than one segment: triangular, trapezoidal, Bates and Irwin-Hall distribu-
tions.

To be more concrete, consider an Irwin-Hall distribution with parameter n. This
distribution is defined as follows:

p(x; n) =
1

2 (n− 1)!

n

∑
k=0

(−1)k
(

n
k

)
(x− k)n−1 sgn(x− k)

1Throughout, we often do not distinguish between distributions and density functions. The intention
should be clear from the context. It should also be pointed out that the main focus of this work is on the
continuous models although in many cases, the generalization to continuous/discrete hybrid models is
not hard.
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Therefore, p(x; n) is an (n + 1)-piecewise function. For instance, Irwin-Hall distribu-
tion with parameters n = 1 to 3 are plotted in Figure 1.1. Clearly, p(x, 1) is a uniform
distribution:

p(x; 1) =

{
1 if 0 ≤ x ≤ 1

0 otherwise

p(x, 2) is a triangular distribution:

p(x; 2) =


x if 0 ≤ x ≤ 1

2− x if 1 < x ≤ 2

0 otherwise

and p(x, 3) corresponds to a 4-piece distribution:

p(x; 3) =


1
2 x2 if 0 ≤ x ≤ 1
1
2

(
−2x2 + 6x− 3

)
if 1 < x ≤ 2

1
2

(
x2 − 6x + 9

)
if 2 < x ≤ 3

0 otherwise

1.1.2 Mixture of truncated basis functions

Piecewise exponential or polynomial functions (also known as mixtures of truncated
polynomials and exponentials) are expressive enough to approximate arbitrary func-
tions up to arbitrary precisions. For instance, following the approximation method
used in [Cobb et al. 2006], Figure 1.2 shows that a log-normal distribution (with pa-
rameters µ = 0 and σ2 = 0.5) can be approximated by a 5-piece mixture of truncated
exponentials (MTE) in a reasonably accurate manner. The corresponding MTE is as
follows:

a01 + a11 exp
(
b11(x−m)

)
+ a21 exp

(
b21(x−m)

)
if exp (µ − 3σ) ≤ x < d−

a02 + a12 exp
(
b12(x−m)

)
+ a22 exp

(
b22(x−m)

)
if d− ≤ x < m

a03 + a13 exp
(
b13(x−m)

)
+ a23 exp

(
b23(x−m)

)
if m ≤ x < d+

a04 + a14 exp
(
b14(x−m)

)
+ a24 exp

(
b24(x−m)

)
if d+ ≤ x < exp (µ + 3σ)

0 otherwise

where a∗∗ and b∗∗ are constants, m = exp (µ −σ2) and

d± = exp
(

1
2
(2µ − 3σ2 ±σ

√
4 +σ2)

)
An important feature for models that are entirely made up of piecewise exponen-

tial or polynomial functions (with particular forms of partitioning constraints2 ) is that
2To date, the partitioning constraints under which closed-form solutions are found is limited to hyper-
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Figure 1.2: Approximation of a log-normal distribution with parameters (µ = 0,σ2 =
0.5) (back curve) with a 5-piece mixture of truncated exponential (MTE) function (red
curve).

marginalization (which is a crucial operation required for probabilistic inference) can
be performed in closed-form. This feature guarantees an analytical solution for the
model.

The other important feature is that they enable modeling arbitrary density (and
more generally speaking, potential) functions. This provides a powerful tool for mod-
els which are beyond the scope of the families of probabilistic distributions which
have known closed-forms (namely, parametric families of functions).

It should be emphasized that the parametric families are too restricted to model
distributions that one may encounter in practice. For instance consider a robotic ap-
plication where the location of a robot is unknown but it is known that it cannot be
outside a particular set of corridors, that is, the distribution of the robot location is
zero outside some arbitrary shaped area. In such applications, the support is often
partitioned into several regions each of which is associated with a truncated (partial
or non-normalized) distribution. Subsequently, the total distribution is approximated
by the mixture of such truncated distributions.

1.1.3 Random variable transformations

The distribution of a function of some random variables with (semi)bounded supports
can be highly piecewise.

As a simple example, it should be pointed out that the Irwin-Hall distribution
p(x; n) discussed on Section 1.1.1 is equivalent to a probability distribution of a ran-

rectangular, hyper-rhombus and linear partitioning constraints that have been used in existing work
[Shenoy and West 2011; Shenoy 2012; Sanner and Abbasnejad 2012].
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D1 D2 Dn

Θ

Figure 1.3: A Simple Bayesian network in which random variables D1 to Dn are con-
ditionally independent given Θ.

dom variable defined as the summation of n independent and uniformly distributed
random variables.

As another example, consider a random variable X with probability density func-
tion f (x) which is positive on the interval (a, b). Similarly, let Y be a random variable
with density g(x) being positive on the interval (c, d). As [Glen et al. 2004] shows, the
density function of their product V = XY is:

h(v) =



∫ v/c

a
g
(v

x

)
f (x)

1
x

dx if ac < v < ad∫ v/c

v/d
g
(v

x

)
f (x)

1
x

dx if ad < v < bc∫ b

v/d
g
(v

x

)
f (x)

1
x

dx if bc < v < bd

1.1.4 Piecewise likelihoods

Figure 1.3 represents a very simple Bayesian network (a graphical model that will be
introduced in Chapter 2) in which, conditioned on a random variable Θ (called, pa-
rameter), random variables D1 to Dn (called, data) are independent. With respect to
Bayes rule, p(Θ |D1, . . . , Dn), the posterior distribution of Θ conditioned on observed
variables D1 to Dn is proportional to the product of the prior distribution p(Θ) times
likelihood functions p(Di |Θ):

p(Θ |D1, . . . , Dn) ∝ p(Θ)
n

∏
i=1

p(Di |Θ)

Each likelihood function is a conditional distribution associated with an obser-
vation of a data point. If the likelihoods are modeled by piecewise functions, the
number of pieces in the posterior can be exponential in the number of observations.
This is clarified in Figure 1.4 where two 2-piece likelihood functions lead to a 4-piece
posterior. It should be pointed out that practical applications may involve a large
number of observations. In such cases, the corresponding piecewise posteriors many
be extremely complicated.
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Figure 1.4: In Bayesian inference with piecewise likelihoods, number of pieces in the
posterior can grow exponentially in the number of observations.
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‖x− a‖ < 50

‖x− b‖ < 50 ‖x− b‖ < 50

N (x, Σ1) N (x, Σ2) N (x, Σ3)

Figure 1.5: An extended algebraic decision diagram (XADD) representing the distri-
bution of the predicted location of a mobile device in the example provided in Sec-
tion 1.1.5. The Location of the device and two radio antennas are represented by x, a
and b, respectively. (Solid and dotted lines represent edges to a low and high children
respectively.)

1.1.5 Context-specific conditional densities

Decision diagrams and context-specific conditional probability distributions such as
tree-CPDs and rule CPDs are natural structures extensively used to represent discrete
models in cases where structural regularities arise in some contexts. In the case of con-
tinuous models, context-specific conditional densities correspond to piecewise den-
sity functions. For instance, consider the following mobile device localization model:

Example 1. The location of a mobile device is performed via multilateration of radio signals
between radio towers positioned at locations a = (a1, a2) and b = (b1, b2) as well as GPS
signals. The coverage range of each antenna tower is 50 meters. If the device position (say,
x = (x1, x2)) is within the coverage range of both antennas, the distribution of its predicted
location y is a bivariate normal distribution N (x, Σ1). If the device location is within the
range of only one antenna, the distribution of its predicted location is N (x, Σ2) (less precise)
and if it is not in the range of any antenna, the distribution follows byN (x, Σ3) (least precise
localization):

p(y | x) =


N (x, Σ1) if ‖x− a‖ < 50, ‖x− b‖ < 50

N (x, Σ2) if ‖x− a‖ ≥ 50, ‖x− b‖ < 50

N (x, Σ2) if ‖x− a‖ < 50, ‖x− b‖ ≥ 50

N (x, Σ3) if ‖x− a‖ ≥ 50, ‖x− b‖ ≥ 50

In this example, the device distance from antennas i.e. ‖x − a‖ and ‖x − b‖ act
as the context. Figure 1.5 illustrates a extended algebraic decision diagram (XADD) rep-
resenting the context specific density function associated with the prediction mobile
device location. An XADD is a generalization of a decision diagram to continuous
(and discrete/continuous hybrid) models [Sanner et al. 2011].
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Develop
Time (D) Outsource Module

Security(M)
Project

Security(A)

Module
Value (V)

Figure 1.6: An influence diagram representing a situation where a company plans
whether to outsource the development of a new software module or does not do so.
The uncertainty nodes are Develop. speed (representing the time it take to develop
the module internally), Module security (representing the quantification of the security
level of the module to be developed) and Project security (representing the security
level of the existing project modules). The decision node, Outsource, indicates whether
to outsource the module or not. The value node, Module value, is a function of devel-
opment speed and the security of the new project augmented with the module.

1.1.6 Influence diagrams

An influence diagram (ID) is a generalization of a graphical model in which along
with probabilistic inference problems, decision making problems are modeled (based
on maximizing expected utility criteria) [Howard and Matheson 2005].

An ID is a directed acyclic graph with three different kinds of nodes:

• random nodes, a.k.a. uncertainty nodes which are represented as ovals and are
associated with probability distribution or density functions. An ID exclusively
made of random nodes is a graphical model.

• decision nodes which are represented as rectangles and indicate the options avail-
able for a decision-maker.

• An often singular value node that is represented by a diamond and is associated
with a utility function upon which the decision-maker acts.

To solve for an ID is to find an optimal action policy that maximizes the expected
utility associated with the value node.

ID Value nodes/utility functions can be sophisticated and in many applications
piecewise. An example of an ID for which the natural modeling requires a piecewise
value function is presented in Figure 1.6. This ID corresponds a situation where a
software company requires adding a new module to an existing project.

The solution to this ID is to decide optimally whether to outsource the new mod-
ule or develop it internally w.r.t. a utility function uV(·) which is a function of three
different uncertain factors:
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• Development time (D): The amount of time it takes to develop the module in the
company compared to outsourcing.

• Module security (M): Security factor associated with developing the module in-
side the company as opposed to relying on the third parties.

• Project security (A): Security factor associated with the existing project code.

Let utility element associated with the above factors be fD(·), fM(·) and fA(·),
respectively. The total security of a system is the minimum of the security of its com-
ponents. Therefore, the utility element associated with the security of the new module
added to the existing code is the minimum of the two security utility elements. As a
result, it is natural to model the total utility function in a piecewise manner as below:

uV(D = d, M = m, A = a) = fD(d) + min ( fS(m) + fS(a))

=

{
fD(d) + fS(m) if fS(m) ≤ fS(a)
fD(d) + fS(a) if fS(m) > fS(a)

An efficient way to solve an ID is to reduce it to an ordinary graphical model
[Zhang 1998]. This involves the replacement of the value node with a newly intro-
duced random variable probability of which is typically proportional to the utility of
the original value node plus some bias [Cooper 1988].

Therefore, an ID with piecewise utility function corresponds to a piecewise graph-
ical model. Piecewise functions provide an appropriate and natural framework for ID
modeling and some existing ID modeling/inference formalisms such as [Cobb and
Shenoy 2004] are already based on piecewise functions.

1.1.7 Probabilistic programming

Emerging probabilistic programming languages (PPLs) try to unify general purpose
programming with probabilistic modeling [Vajda 2014]. While the input values of a
function in a general purpose programming languages typically consists of determin-
istic values, the inputs of a PPL function may be distributions over random variables.
Therefore, in a PPL function, computations take place over uncertain data and the
function output is an implicitly defined distribution over the possible output values.

In PPL, conditional statements (i.e. if-statements) are intrinsically piecewise, lead-
ing to piecewise output distributions.

As an instance, a simple probabilistic program that includes a conditional state-
ment is presented in Figure 1.7-a.3 As it can be seen in Figure 1.7-b, its corresponding
joint distribution is piecewise.

The application domain examples presented in the above subsections is sufficient
to illustrate the need for a general probabilistic inference algorithm that can robustly

3This example is taken from http://people.seas.harvard.edu/˜dduvenaud/talks/
probabilistic-programming-introduction.pdf.
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x = rand; % Draw from Uniform(0,1)

if x < .5;
y = randn; % Draw from standard Normal

else
y = randg + 2.0; % Draw from Gamma(1,1)

end
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Figure 1.7: (a) Pseudo-code of a simple probabilistic program and (b) correspond-
ing (non-normalized) joint distribution of x and y which is piecewise due to the if-
statement in the program.
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handle piecewise graphical models. The aim of the current work is to move a step in
the direction of designing such an inference tool.

1.2 Contributions

The focus of this thesis is on the design of probabilistic inference tools that perform
well in the presence of piecewise and typically discontinuous models. As such, we
propose new samplers which perform much better on piecewise models compared to
their baseline counterparts. For the reasons that will be mentioned shortly, our con-
tributions are based on Gibbs sampling [Casella and George 1992] and Hamiltonian
MCMC [Neal 2011] methods.

1.2.1 Gibbs sampling on piecewise models.

To start with, we concentrate on the Gibbs sampling mechanism: Gibbs sampling is
a powerful particle-based tool that in the context of inference on piecewise models,
is arguably the first choice. The reason is that in contrast to most samplers, on such
models Gibbs sampling performs well in terms of convergence to the true distribution.

Nonetheless, Gibbs sampling has major drawbacks that in practice limit the do-
main of its usage:

1. Gibbs sampling is typically slow since it requires several (univariate) integra-
tions per sample. More precisely, per sample and for each random variable in
the space of the model, Gibbs instantiates the remaining variables and computes
a univariate PDF integral. This integration process can be computationally quite
costly.

2. Univariate integrations required for Gibbs sampling are not always computable
in closed-form.

1.2.1.1 Linear time Gibbs sampling on piecewise models

In our first contribution, we focus on piecewise polynomial density functions. Since
in these models the integration can be carried out in closed-form, only the first draw-
back needs to be addressed. This drawback, nonetheless, can be quite challenging
on piecewise models which consist of a large number of partitions. An example of
such a scenario has already been provided in Section 1.1.4 where it was shown that
in a Bayesian model with piecewise likelihoods, the number of pieces in the posterior
density may grow exponentially in the number of observations. As a matter of fact,
this example is an instance of the following more general problem: In a graphical model
with piecewise factors, the number of pieces in the joint distribution may grow exponentially
in the number of factors.

Our first contribution is to propose a variation of Gibbs sampling that effectively
handles the aforementioned problem and leads to an exponential-to-linear reduction
in the complexity over a naive implementation. Our main insight is that a piecewise
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model can be treated as a mixture of truncated densities. Drawing a Gibbs sample
from the mixture model is equivalent to Gibbs sampling from a fixed number of par-
titions in the original model. This significantly decreases the amount of computation
required for Gibbs sampling. The trade-off is a slower Monte Carlo mixing rate. That
is, compared to the baseline Gibbs sampling, in order to converge to the true distribu-
tion, more samples are required. Nonetheless, as it will be shown, in high dimensional
models, the latter effect is not significant and compared to the naive Gibbs sampler
implementation, in order to reach an arbitrary precision, our proposed algorithm il-
lustrates an exponential to linear decrease in the total sampling time.

1.2.1.2 Fully-automated symbolic Gibbs sampling on an expressive family of piece-
wise models

As an orthogonal contribution we deal with the second drawback of Gibbs sampling.
We study a highly expressive family of models which are not studied in the literature
so far: Piecewise fractions (of polynomials) with polynomial partitioning constraints.

Not only for a large range of such models, univariate Gibbs integrals can be com-
puted in closed-form but we can also compute such integrals without instantiating
the remaining variables. This immediately leads to our second contribution that is
Fully-automated symbolic Gibbs sampling.

We create a mapping from random variables to their corresponding analytical in-
tegrals which are computed only once and prior to the actual sampling process rather
than per sample. Consequently, multiple integrations per sample are reduced to mul-
tiple function evaluations per sample which is significantly faster.

It should be pointed out that the target family of models has interesting character-
istics such as being closed under a large range of (non)linear random variable transfor-
mations. This opens new doors to application domains such as handling deterministic
constraints among random variables.

1.2.2 Hamiltonian Monte Carlo on piecewise models

To apply the proposed Gibbs samplers on arbitrary models, they should be approx-
imated by piecewise polynomials or fractional functions. This is a major drawback
since such approximations may not be easy to find or the number of required parti-
tions may grow exponentially with dimensionality. On the other hand, like any other
class of functions, piecewise polynomial/fractional models have their own shortcom-
ings. Most notably, in graphical models with huge number of factors, computation of
the joint posterior requires several polynomial/fractional multiplications which can
be sensitive to numerical errors. For such graphical models, the family of (piece-
wise) exponential distributions is more suitable since in order to multiply distribu-
tions/factors of the latter class, it is sufficient to add their logarithms.

Unfortunately, in general Gibbs sampling cannot be directly used on the exponen-
tial family. The reason is that Gibbs sampling relies on integrals that in the case of
exponential functions, often cannot be solvable in closed-form. In our third contribu-
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tion, we focus on sampling from piecewise distributions without any assumption on
the form of the modeling functions in any partition. Instead of Gibbs sampling we
turn to Hamiltonian Monte Carlo (HMC), a particle-based inference method that has
become quite popular in the recent years and has been utilized in the state-of-the-art
probabilistic programming language STAN [Stan Development Team 2014].

Unlike Gibbs sampling, HMC works with the logarithm of densities and there-
fore is less sensitive to numerical errors.4 HMC does not require any assumption on
the class of distributions; therefore, in theory it can be used on any continuous space
model. Nonetheless, on the piecewise models, its performance can be disastrously
poor. A brief explanation is as follows: HMC sampling is motivated by Hamiltonian
dynamics in physical systems. More precisely speaking, in HMC, the negated log-
arithm of a density is assumed to be a potential energy function and to generate a
sample, the trajectory of a particle is followed using the Hamiltonian dynamics. In
HMC, Hamiltonian equations are approximated by methods such as leapfrog integra-
tion or similar algorithms. Such methods can produce very poor simulations if the
energy function is discontinuous which is typically the case with piecewise models.

Our contribution is to design a variation of HMC sampling method, called reflective
HMC (RHMC), the performance of which does not deteriorate in piecewise models.
Being motivated by the behavior of Hamiltonian dynamics of physical systems such
as optics, we generalize HMC and its leapfrog integration mechanism to become ap-
propriate for piecewise/discontinuous models. For instance, a moving object that hits
an obstacle either passes over it or bounces back. Similarly, light may reflect or refract
over a refractive surface. In any case, the momentum vector in the collision point
(which is a point where the potential energy is discontinuous) is modified in such a
way that the system’s Hamiltonian remains unchanged.

A key point for the correctness of HMC is the volume preservation property of
Hamiltonian dynamics. Due to this property, the Hamiltonian trajectories can be used
to define complex mappings without requiring to perform any adjustment via a Ja-
cobian factor [Neal 2011]. It is well known that this property holds even if the dy-
namics are approximated via the leap frog algorithm or a similar mechanism. We
prove that the volume preservation property also holds under reflection and refrac-
tion mappings. This guarantees the correctness of the proposed method and as our
empirical results show, it can significantly outperform the baseline HMC and be much
less sensitive to the parameter tuning.

1.3 Thesis outline

In this chapter we introduced and motivated the research problem that we are inter-
ested in: efficient particle-based inference in piecewise graphical models. The remain-
der of the thesis is structured as follows: Chapter 2 provides the background material
required to understand exact and approximate probabilistic reasoning in graphical

4HMC has its own problems: unlike Gibbs, it requires input parameters, and its performance can
drastically deteriorate if they are not tuned well.
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models. The main focus of this chapter would be on particle-based inference methods
(sampling). Chapter 3 formalizes piecewise models and their associated data struc-
tures. In Chapter 4 we discuss our first proposed method: fast Gibbs sampling via
exponential speedup in the number of (piecewise) factors. The performance of the
proposed algorithm is evaluated on a Bayesian pairwise preference learning (BPPL)
and a Bayesian market making model. In Chapter 5 our second contribution, symbolic
Gibbs, is presented. As an application, the focus is mainly on handling deterministic
constraints among random variables. Chapter 6 deals with the third contribution, re-
flective HMC, and compares it to baseline HMC and another sampling tool. Finally,
Chapter 7 concludes this thesis and provides a summary and potential direction for
future research.



Chapter 2

Probabilistic Graphical Models

This chapter contains background material regarding representation and inference on
probabilistic graphical models. Probability theory is a formalism for the analysis of
random phenomena. Our primary focus is on multidimensional continuous proba-
bility functions p defined in the most natural way. A formal set of definitions and
assumptions representing the basic probabilistic model that we are interested in, is
presented in Section 2.1. The representation and inference on probabilistic graphical
models are dealt with in Sections 2.2 and 2.3 respectively.

2.1 Basic Definitions and Assumptions

Outcome. The result of a single execution of a probabilistic model is called an outcome.

Sample space. The set of all possible outcomes is referred to as sample space (Ω).

Event. An event is a set of zero or more outcomes.

Probability space & measure. A probability space 〈Ω,F , p〉 is a tuple of a sample space
Ω, a collection F of events (to be considered) that forms a σ-algebra and a probability
measure p i.e. a function that assigns values (probabilities) to events in F . The measure
p has to satisfy the following properties:

1. p(∅) = 0

2. p(Ω) = 1

3. if (a countable collection of) events E1, E2, . . . are pairwise disjoint sets then the
probability value assigned to the union of them is equal to the summation of
their probabilities (countable additivity property).

As it is commonly done, throughout, in case Ω is countable we assume F is the power
set of Ω and if it is uncountable we let F be the Borel algebra of Ω.1

(Univariate) random variable. A (single) random variable is a measurable mapping

1Borel algebra is the smallest σ-algebra that makes all open sets measurable.

15
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from Ω to another measurable space (state space). Throughout we only consider ran-
dom variables where the set of real numbers is their associated state space. That is,

X : Ω→ R

p(X = x) is a short-form for the probability of the event:

{ω ∈ Ω : X(ω) = x}

Probability mass function (PMF) & probability density function (PDF). In case a
random variable is discrete (i.e. takes discrete realizations), probability measure is
called a probability mass function (PMF) and if it is continuous, the measure is called
probability density function (PDF) or simply density. Throughout, when there is no am-
biguity about whether the model is discrete or continuous, or if both cases are in-
tended, we may refer to the probability measure simply as the distribution.

Multivariate random variable & joint density function. Throughout, we use bold let-
ters to represent vectors of elements. A multivariate random variable X = (X1, . . . , Xn)
is a vector of random variables X1 to Xn with the following joint density function:

p(X1 = x1, . . . , Xn = xn) := p{ω ∈ Ω : X1(ω) = x1, . . . , Xn(ω) = xn}

We denote random variables by capital letters (e.g. Xi) and their realizations by small
letters (e.g. xi). Nevertheless, in case there is no ambiguity, we may omit the random
variables (i.e. writing p(x1, x2) instead of p(X1 = x1, X2 = x2)). We may also omit the
realizations (i.e. writing p(X) instead of p(X = x)) in case the statement holds for all
realizations.

Marginal distribution. For continuous random variables the following equality al-
ways holds:

p(xi) =
∫

p(x1, . . . , xn) dx1 . . . dxi−1 dxi+1 . . . dxn

The above integration is called marginalization (of X−i i.e. all random variables except
Xi). In this context, p(xi) is referred to as the marginal distribution.

Similarly, if a marginalized random variable is discrete, its associated integration
is replaced by summation over its possible values. For instance, in case all X−i are
discrete,

p(xi) = ∑
x1∈VAL(X1)

. . . ∑
xi−1∈VAL(Xi−1)

∑
xi+1∈VAL(Xi+1)

. . . ∑
xn∈VAL(Xn)

p(x1, . . . , xn)

Cumulative distribution function F (CDF). (Joint) cumulative distribution function, de-
noted as F(x1, . . . , xn) or CDF(x1, . . . , xn), represents the probability that each random
variable Xi takes on a value not greater than xi:

F(x1, . . . , xn) = p(X1 ≤ x1, . . . , Xn ≤ xn)
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Each CDF has the following properties:

1. Being monotonically non-decreasing for each of its variables

2. Being right-continuous for each of its variables

3. 0 ≤ F(x1, · · · , xn) ≤ 1

4. limx1→+∞,··· ,xn→+∞ F(x1, . . . , xn) = 1

5. limxi→−∞ F(x1, ..., xn) = 0, for all i = 1, . . . , n

Clearly, the density function can be derived from the CDF as follows:

p(x1, . . . , xn) =
∂nF(x1, . . . , xn)

∂x1 · · · ∂xn

Conditional probability. By definition, the conditional probability of a random vari-
able or a vector of random variables (or more generally, an event) X given observed
random variable(s) (resp. event) Y is,

p(X |Y) :=
p(X, Y)

p(Y)
(2.1)

Independence. Let X and Y be a pair of random variable(s) (or more generally, events).
We denote X ⊥ Y and say X and Y are independent if and only if,

p(X |Y) = p(X) (2.2)

Clearly, if X ⊥ Y then Y ⊥ X since relations (2.1) and (2.2) imply,

X ⊥ Y ⇒ p(X, Y) = p(X) · p(Y)

Conditional independence. A pair of random variables X and Y (or more generally
two events) are conditionally independent given a third random variable Z (resp. event)
(denoted as: X ⊥ Y | Z) if and only if,

p(X, Y |Z) = p(X |Z) · p(Y |Z)

Expected value. The expected value (or expectation) of a (continuous) random variable
X (w.r.t. a reference distribution p) is,

E[X] :=
∫

x · p(x) dx

A similar definition exists for discrete random variables where instead of integration,
summation over all possible values of X is computed:

E[X] := ∑
x∈VAL(X)

x · p(x)
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x3 x4

x2x1

x5

Figure 2.1: A Bayesian network representing the joint probability distribution over
random variables X1 to X5 for the example provided in subsection 2.2.1.

2.2 Representation of Graphical models

The framework of probabilistic graphical models (GMs) provides graph structured
specifications of probabilistic models. Using GMs, joint distributions are represented
in compact and factorized manners by means of exploiting conditional dependen-
cies between random variables.2 Such dependency structures are used to design au-
tomated, scalable and effective inference algorithms for the associated probabilistic
models.

In this section we focus on introducing common graphical model representations
while the associated inference algorithms are postponed to Section 2.3. Two main
families of graphical models are:

1. directed acyclic models, known as Bayesian networks (BNs), and

2. undirected models referred to as Markov random fields (MRFs).

After introducing these two families of GMs, we present a more general framework,
namely factor graphs, that encompasses both aforementioned families.

2.2.1 Bayesian networks (BNs)

A Bayesian network also known as a probabilistic directed graphical model is a directed
acyclic graph (DAG) suitable for representation of conditional dependencies of ran-
dom variables suitable. In such networks, each vertex represents a distinct random
variable (therefore, the terms vertex and random variable may be used interchangeably
throughout). Whenever an arrow between two vertices is missing, it means that their
corresponding random variables are (conditionally) independent. For example, con-
sider a probability distribution over five variables X1 to X5. The general form of such
a distribution can be factorized as follows:

p(x1, x2, x3, x4, x5) =

p(x1) · p(x2 | x1) · p(x3 | x1, x2) · p(x4 | x1, x2, x3) · p(x5 | x1, x2, x3, x4)

2The main references of this section are [Bishop 2006; Koller and Friedman 2009; Russell and Norvig
2003].
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D1 Dn

Figure 2.2: A Bayesian network representing the Bayesian paradigm.

Nevertheless, The Bayesian network depicted in Figure 2.1 visualizes the case where
X1 and X2 are independent (i.e. X1 ⊥ X2) (since no arrow links them) and given X2,
X3 and X4 are independent (i.e. X3 ⊥ X4 |X2) , etc. It can be seen that in such a case,
the aforementioned factorization can be simplified to,

p(x1, x2, x3, x4, x5) = p(x1) · p(x2) · p(x3 | x1, x2) · p(x4 | x2) · p(x5 | x4)

More generally, if we let X = {X1, . . . , Xn} be the set of all relevant random vari-
ables (i.e. the set of all vertex labels in the model) and the set of parents of a vertex
Xi ∈ X in a Bayesian network be represented by PA(Xi), that network represents a
joint distribution that factorizes into,

p(x) =
n

∏
i=1

p(xi | PA(xi)) (2.3)

Bayesian networks and conditional independence. Each Bayesian network has the
following properties:

• Local Markov property: Any random variable is conditionally independent of
its non-descendant vertices given it’s parent variables,

Xi ⊥ X\DE(Xi) | PA(Xi)

where DE(Xi) denotes the set of descendants of Xi (including itself).

• Each random variable is conditionally independent of all other variables in the
network given its Markov blanket i.e. its parents, its children and all other parents
of its children.

2.2.1.1 Bayesian inference / Bayesian paradigm

Bayesian paradigm boils down the uncertainty about the model of the world into
maintaining a belief distribution over a univariate or multivariate parameter Θ that is
updated via observation of data random variables D1 to Dn. Given Θ, it is assumed
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that D1 to Dn are identically distributed and independent from each other:

Di ⊥ D j | Θ ∀i, j 6= i ∈ {1, . . . n}

Figure 2.2 depicts a Bayesian network representing this paradigm where Θ is re-
garded as a hidden random variable and D1 to Dn as observed vertices. According to
the topology of this network,

p(Θ, D1, . . . , Dn) = p(Θ)
n

∏
i=1

p(Di |Θ)

In addition, by the definition of conditional probability,

p(Θ |D1, . . . , Dn) =
p(Θ, D1, . . . , Dn)

p(D1, . . . , Dn)
∝ p(Θ, D1, . . . , Dn)

Combining these two relations, it is clear that the posterior distribution p(Θ |D1, . . . , Dn)
is proportional to the product of the prior distribution p(Θ) and likelihood functions
p(D1 |Θ) to p(Dn |Θ),

p(Θ |D1, . . . , Dn) ∝ p(Θ) ·
n

∏
i=1

p(Di |Θ) (2.4)

2.2.2 Markov random fields (MRFs)

Markov random fields (MRF) also known as undirected graphical models form the sec-
ond major class of graphical models. In contrast to BNs, an MRF network is a graph
representation where edges do not carry directional information. MRFs provide a
different perspective of the independence structure among random variables and are
more suitable for modeling phenomena where a directionality cannot be naturally
ascribed to the interaction between random variables.

Let G be an undirected graph where the vertices represent a set of random vari-
ables X = {X1, . . . , Xn} and CL(G) represent the set of maximal cliques3 of G. Also let
for any C ∈ CL(G), VA(C) is the set of variables in C. With respect to G, X forms a
Markov random field if the joint distribution can be factorized over CL(G) as,

p(X) =
1
Z ∏

C∈CL(G)

ψC(VA(C)) (2.5)

In the above equation, Z is a normalization constant andψC is a strictly positive func-
tion called a potential function of clique C. If potential functions are represented by
exponentials4,

ψC(VA(C)) = exp(−E(VA(C)))

3A maximal clique of an undirected graph, G, is a subgraph of it that is a complete graph and is not a
proper subset of any subgraph of G which is a complete graph.

4Such a representation is called Boltzmann distribution.
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Figure 2.3: A factor graph representing the same distribution as the Bayesian network
in Figure 2.1

E is called an energy function. Obviously, in case a relatively low (or high) energy is
assigned to a set of variable values, a higher (resp. lower) probability is assigned to
those values.

Markov random fields and conditional independence. Each MRF associated with a
model with random variables X = {X1, . . . Xn} has the following properties:

• Pairwise Markov property: Any two distinct random variables Xi and X j that
are not connected by a link are conditionally independent given the rest of vari-
ables:

p(xi, x j | x\{xi, x j}) = p(xi | x\{xi, x j}) · p(x j | x\{xi, x j})

or more concisely:
Xi ⊥ X j | X\{Xi, X j}

• Local Markov property: Any variable Xi is conditionally independent of all
other variables given the set of its neighbors NE(Xi):

Xi ⊥ X\(NE(Xi) ∪ {Xi}) | NE(Xi))

• Global Markov property: Let A and B be two distinct subsets of X (equiva-
lently, two subgraphs of a MRF G) and C be a separating subset i.e. a subset of G
such that any graph path containing a member of A and a member of B passes
through (i.e. contains a member of) C:

A ⊥ B | C

2.2.3 Factor graphs

Bayesian networks and Markov random fields are two subsets of a more general
framework: Factor graphs.

In the latter framework, the joint distribution (over a set of variables X) is factor-
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ized as:5

p(X) =
m

∏
s=1

fs(Xs) (2.6)

where as before, X = {X1, . . . , Xn}, for all 1 ≤ s ≤ m, each Xs ⊂ X and fs is a function
of them. Clearly, both factorization mechanisms of relations (2.3) and (2.5) can be seen
as special cases of relation (2.6).

Factor graph structure. The factor graph of an objective function p(·) is a data structure
visualizing how variables X and local functions { fi}m

i=1 factorize p(X). It is a bipartite
graph with n variable-typed nodes and m factor-typed nodes. Each variable node rep-
resents an (observable/ hidden) variable in X and each factor node represents a local
function such that the node corresponding fk is linked to the variable nodes corre-
sponding Xk.

As an instance, Figure 2.3 is a factor graph representation of the distribution which
is visualized by Figure 2.1. Here, factor nodes correspond to the following functions:

fa = p(x1) fb = p(x2) fc = p(x3 | x1, x2)

fd = p(x4 | x2) fe = p(x5 | x4)

2.3 Inference in Graphical Models

The task of inference on a graphical model is to compute the posterior probability
distribution of some query variables (corresponding some hidden nodes), given a set of
evidence variables (observed nodes) [Russell and Norvig 2003].

Let Q = {Q1, . . . , Qm} be the set of query variables, E = {E1, . . . , En} be the set of
evidence variables and U = {U1, . . . , Uk} be the set of variables neither mentioned in
the query nor in the evidence. Also let (Q = q), be the short form for,

(Q1 = q1, . . . , Qm = qm)

(E = e) be the short form for,

(E1 = e1, . . . , En = en)

and (U = u) be a short form for (U1 = u1, . . . , Uk = uk), etc.
By Bayes rule, the posterior probability of a query Q given an evidence E is pro-

portional to the joint distribution of Q and E. Therefore, the random variables of the
Bayesian network neither in Q nor in E should be marginalized out.

5Instead of the product, in some contexts, factorization is performed by summation (see e.g. [Yedidia
2011]).
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p(Q = q |E = e) =
p((Q = q), (E = e))

p(E = e)
=∫ +∞

u1=−∞ . . .
∫ +∞

uk=−∞p(U = u, Q = q, E = e) du1 . . . duk∫ +∞
u1=−∞. . .

∫ +∞
uk=−∞

∫ +∞
r1=−∞. . .

∫ +∞
rm=−∞p(U = u, Q = r, E = e) du1 . . . duk dr1 . . . drm

Clearly, if a marginalized variable is discrete, instead of integration, the summation
over its possible values should be computed. For instance, in a network where U and
Q are discrete:

p(Q = q |E = e) =
p((Q = q), (E = e))

p(E = e)
=

∑
u1∈VAL(U1)

. . . ∑
uk∈VAL(Uk)

p(U = 〈u1, . . . , uk〉, Q = q, E = e)

∑
u1∈VAL(U1)

. . . ∑
uk∈VAL(Uk)

∑
r1∈VAL(Q1)

. . . ∑
rm∈VAL(Qm)

p(U = 〈u1, . . . , uk〉, Q = 〈r1, . . . , rm〉, E = e)

where VAL(Vi) is the set of possible values of random variable Vi.
In either case, calculations required for the computation of marginal distributions

are quite expensive. As a matter of fact, the most important challenge facing prob-
abilistic inference is to carry out marginalization efficiently. As such, the inference
techniques that will be presented shortly, try to perform this task in an effective way.

2.3.1 Exact inference

Exact inference is possible only if the marginal distributions have closed form solu-
tions. For continuous random variables, this is often not the case. As such, in this
section our focus is on discrete models.

As mentioned in the previous chapter, both Bayesian networks and Markov ran-
dom fields are subsets of factor graph. As a result, to cover both cases, we present the
inference algorithms on the factor graphs only.

The main task of inference in factor graphs is to compute an expression of a form
that is known as sum-product when random variables are discrete:

∑
Zk

. . . ∑
Z1

∏
φ∈Φ

φ

(or more concisely ∑Z ∏φ∈Φφ) where Φ is a set of factors6 and Z = {Z1, . . . , Zk} is the
set of variables that should be marginalized out. The following exact inference tech-
niques find ways to perform such a computation with minimum repeated operations.

6Each factor φ is a function from VAL(X1) × . . . VAL(Xn) to R where x = {Xi}n
i=1 is the set of all

(relevant) random variables and VAL(Xi) is the set of possible values of variable Xi.
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2.3.1.1 Variable elimination (VE)

Algorithm 1: Variable elimination algorithm for factor graphs (following [Koller
and Friedman 2009])

procedure sum-product-VE (
Φ /*set of factors*/,
Z /*k-tuple of variables Z1, . . . , Zk to be eliminated sequentially*/)

for i = 1 to k do
Φ← sum-product-eliminate-a-var(Φ, Zi)

end for
return ∏φ∈Φφ

procedure sum-product-eliminate-a-var (
Φ /*set of factors*/,
Z /*a variable to be eliminated*/)

/*create Φ′, the set of all factors that involve Z: */
Φ′ ← {φ ∈ Φ | Z ∈ SCOPE(φ)}
/*create Φ′′, the set of all factors that do not involve Z: */
Φ′′ ← Φ\Φ′

/*create ψ, the product of the factors that involve Z: */
ψ← ∏φ∈Φ′ φ

/* make a new factor τ by summing out Z on ψ: */
τ ← ∑Zψ

/*return the set of factors that do not involve Z plus a factor that is made by
summing out Z in the factors that involve it: /*
return Φ′′ ∪ {τ}

The idea behind the variable elimination algorithm is the observation that the
scope of each factor (i.e. the set of variables involved in that factor) is often a small
subset of the total model random variables and this allows us to utilize the reverse
distributive law and push in each ∑Zi

to the right till it operates only on the factors
that have the variable Zi in their scope.

In order to calculate the sum-product ∑Z ∏φ∈Φφ, the VE algorithm eliminates (i.e.
marginalizes) one variable Zi at a time. It finds the set Φ′ of factors that have Zi in
their scope, multiplies them to make a new factor ψ and finally, sums out Zi on ψ to
make a new factor that should replace Φ′ in Φ (see Algorithm 1) [Koller and Friedman
2009].

As an example consider the a set of (discrete) reference random variables X and a
set of factors Φ, defined as follows:

X := {A, B, C, D} Φ := {φA,φAB,φBC,φCD}
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where the subtitle of each factor indicates the variables mentioned in it. For instance,

SCOPE(φBC) = {B, C}

If the ordered list of variables that should be eliminated is Z = 〈A, B, C〉 (so that
variables are eliminated in the alphabetic order), the final factor produced by VE is:

f1(D) := ∑
C
φCD ∑

B
φBC ∑

A
(φABφA)

One the other hand, if the variables are eliminated in the reverse order i.e. Z′ =
〈C, B, A〉, the result of VE will be:

f2(D) := ∑
A
φA ∑

B
φAB ∑

C
(φCDφBC)

Both f1(·) and f2(·) are clearly equivalent to the following (non-factorized) function:

f (D) := ∑
C

∑
B

∑
A
(φAφABφBCφCD)

Nevertheless, either f1(·) or f2(·) can be computed much more efficiently than f (·)
because intermediate factors that are created by marginalization are simpler than the
original factors.

2.3.1.2 Clustering (join tree) algorithms

Clustering algorithms provide an effective way to compute posterior probabilities for
each variable in the network. In this approach an algorithm called belief propagation is
executed over a data structure called clique tree. These concepts are defined below:

Cluster tree. A cluster tree U for a set of factors Φ over a set of random variables
{X1, . . . , Xn} is an undirected graph such that its nodes are (associated with) clusters
(a.k.a. cliques) Ci which correspond to subsets of random variables in the original net-
work, that is:

Ci ⊆ {X1, . . . , Xn},

and any edge linking clusters Ci and C j is associated with a set of random variables
called sepset Si, j:

Si, j = Ci ∩ C j

A cluster tree must preserve the following two properties:

1. Family preservation property: For each factorφk (in Φ), there should exist (at least
one) cluster Cα(k) in U such that Scope[φk] ⊆ Cα(k). Otherwise stated, cluster
Cα(k) should be able to accommodate factorφk. This property guarantees that U
allows Φ to be encoded.

2. Running intersection property: For any variable Xi, the set of nodes and edges
of U that contain Xi form a tree. This property guarantees that U connects all
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information about all variables without any feedback loops.

Clique tree. A clique tree (also know as join tree or junction tree) is a directed tree
simply made by orienting a cluster tree. To do so, an arbitrary node in the cluster tree
is designated as the root and the edges are directed toward this node.

Belief propagation (BP). BP is a message passing7 [Yedidia 2011] algorithm applied to
a clique tree to carry out inference. The idea is to catch intermediate factors computed
during variable elimination and pass them via messages. This algorithm consists of
the following steps:

1. Assigning factors to clusters: Given a set of factors Φ, the model is initialized with
assigning eachφk ∈ Φ to a cluster Cα(k) such that Scope[φk] ⊆ Cα(k) (this can be
done with respect to the family preservation property).

2. Constructing initial potentials: To each cluster (node) Ci, an initial potentialψi(Ci)
is assigned as follows:

ψi(Ci) = ∏
k:α(k)=i

φk

3. Message initialization: All messages δi→ j (passing from cluster nodes Ci to C j) are
initialized to 1.

4. Messaging cycle: Edges are sorted/visited from the leaves to the root. Whenever
an edge (i, j) is visited, firstly the potential assigned to cluster Ci is updated:

ψi(Ci) ← ψi(Ci)× ∏
k∈(Ni\{ j})

δk→i,

where Ni is the set of neighboring nodes of Ci. Then, the δi→ j (the message from
node Ci to node C j) is updated:

δi→ j = ∑
Ci\Si, j

ψi(Ci)

Informally speaking, δi→ j(Si, j) is generated as follows: Firstly, the product of
all incoming messages to Ci (except the one received from C j) times the initial
potential assigned to Ci is computed and then the variables in Ci that are not in
Si, j are summed out from it.

5. Updating the root potential: In the end, the potential associated with the root, say
Cr, is updated:

ψr(Cr) ← ψr(Cr)× ∏
k∈(Nr)

δk→r

The resulting potentials ψi are proportional to the joint marginal distribution of
the set of variables in cliques Ci.

7Message passing algorithms are a group of solutions to the optimization problem when the problem
is represented as a factor graph. They get their name from the fact that in each step, messages are sent
between nodes in the factor graph.
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2.3.2 Approximate inference by sampling (Monte Carlo methods)

When the networks are large and the nodes are connected via a huge number of links,
exact inference becomes intractable and computationally prohibitive. In such situa-
tions, the joint distribution has to be computed by means of approximate inference
techniques. On the other hand, regardless of the size and the topology of the network,
if a model is continuous (or discrete/continuous hybrid) the integrations required for
marginalization often do not have closed-form solution which also necessitates ap-
proximate solutions.

The most general and therefore, arguably, the most important class of approximate
inference techniques is known as Monte Carlo sampling methods (a.k.a. particle-based
or sampling-based methods).

The idea is to take samples from a probability distribution by means of construct-
ing a Markov chain that has the original distribution as its stationary distribution.

An important characteristic of Monte Carlo-based approximate inference is that
these methods provide asymptotically unbiased solutions in the sense that if the number
of samples drawn from a density function is sufficiently large, the approximation error
will be arbitrarily small and in the limit tends to zero.

Prior to describing sampling mechanisms,we introduce some terminology:

Particle (sample). A particleξ drawn from a distribution p(X = x) assigns appropriate
values,

ξ(Xi) ∈ VAL(Xi)

to each random variable Xi ∈ X. If

Y = {Y1, . . . , Yk} ⊆ X

by ξ〈Y〉 we denote the event {Yi = ξ(Yi)}k
i=1.

Sampling. Sampling is the practice of simulating a distribution by means of a se-
quence of (pseudo)randomly generated particles (or samples) that are distributed ac-
cording to that distribution. From a set of such particles,

Ξ = {ξ1, . . . ,ξN}

the expectation of each function f can be approximated by

ÊΞ( f ) =
1
N

N

∑
i=1

f (ξi)

More specifically, by substituting f (ξi) by 1I[ξi〈Y〉 = y] 8:

p̂Ξ(y) =
1
N

N

∑
i=1

1I[ξi〈Y〉 = y]

8If c ≡ >, 1I[c] returns 1 otherwise 0.
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which is the number of particles in which Y is valuated by y divided by the total
number of particles.

2.3.2.1 Inverse transform sampling

A central prerequisite for sampling from arbitrary distributions is the ability to take
samples from a uniform distribution. This can be done by various pseudorandom num-
ber generation (PRNG) algorithms or by using hardware random number generators. Since
modern programming languages are equipped with this ability, PRNG algorithms are
not covered by this thesis.

Being equipped with a uniform sampler, by a simple mechanism, one can generate
samples for an arbitrary continuous distribution if the (inverse of) cumulative distri-
bution function (CDF) of the target distribution is provided via a mechanism known
as inverse transform sampling. We only consider the univariate case. Generalization
to the multivariate case is also feasible and based on the idea of mapping elementary
events to the interval [0, 1] by associating intervals to them proportional to their prob-
abilities and then uniformly taking sample from the interval.

In order to draw a sample from a continuous distribution p(X) associated with
CDF F(X), it suffices to uniformly sample a number u between 0 and 1, i.e.

u ∼ U (0, 1)

and return x = F−1(u) i.e. a value x ∈ VAL(X) such that F(x) = u.
The proof of correctness (which is a slightly modified version of the proof pre-

sented in [Devroye 1986, Chap. 2]) is as follows:

Proposition 1. Let F be a continuous CDF on R with inverse function F−1. If U is random
variable uniformly distributed over [0, 1], then the CDF of F−1(U) is F.

Proof. We should show that p(F−1(U) ≤ x) = p(X ≤ x).

p
(

F−1(U) ≤ x
)
= p

(
F(F−1(U)) ≤ F(x)

)
, since F is monotonic

= p
(
U ≤ F(x)

)
= F(x) , since U is uniform hence pr(U ≤ m) = m.

Algorithm 2 illustrates a variation of the inverse transform sampling that

1. Does not require the inverse of CDF being known. (F−1 is approximated.)

2. Does not require the CDF to be normalized i.e. works with any function being
proportional to the target CDF.

The first property is due to the fact that cumulative distribution functions are mono-
tonically increasing function and therefore can be approximated via binary search.



§2.3 Inference in Graphical Models 29

Algorithm 2: INVERSETRANSFORMSAMPLING(F(·))
Input: F(x), (non-normalized) cumulative distribution function of a (univariate)
random variable X. (That is, a function proportional to p(X ≤ x).)
Output: a samples drawn for X via inverse transform sampling.

/* Uniformly sample a number u in [0, F(∞)]: */
u ∼ U (0, F(∞))
/* return the approximation of F−1(u): */
Return INVERSE(F, u, 0, F(∞))

// Approximates F−1(u) = inf{x : F(x) = u, a ≤ u ≤ b} via binary search.
procedure INVERSE(

F(·) /*a univariate monotone function*/,
u /*a value for which the inverse function has to be computed*/,
a, b /*associated lower and upper bounds*/)

l1 ← a; l2 ← b
while true do

∆ = F( l1+l2
2 )− u

/* ε is a constant indicating the maximum acceptable approximation error. */
if |∆| < ε then return l1+l2

2
if ∆ > 0 then l2 ← l1+l2

2 else l1 ← l1+l2
2

end while

The second property is due to the fact that if a CDF is not normalized it converges
to the normalization constant and therefore, in practice the latter constant can be ap-
proximated by evaluating the (non-normalized) CDF function for a large value.

Clearly, in case the support of the target distribution is finite, that is, the distribu-
tion is surrounded by a 0-probability space, the aforementioned normalization con-
stant can be computed precisely: it is sufficient to evaluate the CDF for a value more
than the upper bound of the support.

2.3.2.2 Forward sampling

If the task of sampling from a Bayesian network is to estimate marginal probabilities
without being conditioned on particular observations, that is, if we intend to draw a
sample from a prior distribution, the task can be accomplished in a fairly easy manner:
It is sufficient to sample parent nodes prior to their children.

X Y

Z

For instance, consider a simple BN over random variables
X, Y and Z where no vertex is observed and Z is condition-
ally dependent on the other variables (as depicted in the right
hand side). In this example, variable sampling order should
either be 〈X, Y, Z〉 or 〈Y, X, Z〉. This process is called forward
or ancestral sampling. More formally, in order to assign a sam-
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ple value to a vertex, forward sampling is performed on its associated distribution
conditioned on the sample values already assigned to its parent nodes (See Algorithm
3).

Algorithm 3: A simple sampling on the prior distributions in a Bayesian network
procedure FORWARDSAMPLING (
B /*a Bayesian network over X = {X1, . . . , Xn} where indices indicate a

topological ordering*/ )

Let ξ be a particle vector that should be returned.
for i = 1 to n do

/* Sample Xi conditioned on the samples already taken from its parents:*/
ξ(Xi) ∼ p(Xi |ξ〈PA(Xi)〉)

end for
return ξ

The rest of this subsection deals with sampling from conditional distributions (e.g.
p(Y = y |E = e)). To be more specific, consider the problem of sampling from a
Bayesian network with observed nodes E = {E1, . . . , Ek}. In this case, the generated
samples should comply with the observation. Forward sampling cannot be directly
used to sample these nodes and their parents/ancestors (although the particle values
of the remaining nodes can still be generated by forward sampling as before). As a
specific form of rejection sampling (that will be outlined in Section 2.3.2.3), a simple
solution is to sample the prior distribution and discard the particles that do not com-
ply with the observation. This technique can only be applied to discrete distributions
and even in that case, if the probability of the evidence is low, the rate of discarded
samples can be arbitrary large.

Therefore, sampling from posterior distributions (and in particular, continuous
space posteriors) is a major challenge and in the remaining part of this subsection we
deal with the relevant solutions proposed in the literature.

Before presenting such techniques, it should be pointed out that in contrast with
priors distributions that often have simple forms (e.g. are uniform of normal) the
posterior distributions can in particular be complicated functions e.g. may be multi-
modal, disconnected and piecewise.

2.3.2.3 Rejection sampling

Rejection sampling (a.k.a. acceptance-rejection algorithm) is a basic Monte Carlo based
sampling method.

Algorithm 4 illustrates a simple version of the rejection sampling algorithm where
in order to approximate a posterior distribution in a Bayesian network, samples are
taken from the corresponding prior distribution; however, the samples that are incon-
sistent with the evidence are rejected and then based on the non-rejected (i.e. accepted)
samples, the posterior distribution is approximated.
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Algorithm 4: Rejection sampling from a posterior distribution associated with a
Bayesian network.

procedure REJECTIONSAMPLING (
B /*a Bayesian network over x = {X1, . . . , Xn} where indices indicate a

topological ordering*/,
E /*set of random variables that their values are determined by evidence s.t.

the value of Ei ∈ E is accessible by VAL(Ei)*/, )

Let ξ be a particle that should be returned.
repeat

particle-rejected← ⊥
for i = 1 to n do
ξ(Xi)← take a sample from p(Xi |ξ〈PA(Xi)〉)
if Xi ∈ E & ξ(Xi) 6= VAL(Xi) then

particle-rejected← >
break

end if
end for

until ¬particle-rejected
return ξ

A more general version of rejection sampling facilitates generating particles from
any distribution f (x) from which direct sampling is difficult, provided with an aux-
iliary distribution g(x) from which sampling is easier and it is known that f (x)

g(x) is
bounded from above by a constant c > 1. That is, c · g(x) is an envelope for f (x).

As illustrated in algorithm 5, to take a sample from f using the latter version of
rejection sampling, a sample x is taken from g and accepted with probability,

f (x)/
(
c · g(x)

)
otherwise it is rejected and the process is repeated. Note that for the correctness of
convergence to the true target distribution, neither f nor g are required to be normal-
ized.

Advantages and disadvantages. The main advantage of rejection sampling is the fact
that (unlike the Markov chain Monte Carlo methods that will be introduced shortly) the
sampled particles are independent from each other. This, in its turn, leads to a rapid
rate of convergence to the target distribution as the number of generated samples
grows.

On the other hand, the major disadvantage of this method is that the sampling
time increases exponentially in the variable space dimensionality. Clearly, if the en-
velope constant c is too large, the speed of this algorithm is slow since often lots of
samples are required until one is accepted. However, even if c is small (i.e. envelope
is tight) the curse of dimensionality is often inevitable.
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As a very simple example consider the problem of rejection sampling from an
n-dimensional target distribution that is positive in a hyper-cubic region with side
length 0.9. Suppose that the envelope is a uniform function which also has a hyper-
cubic support but its side length is 1.0. Even if the envelope is quite tight, at least

1.0n − 0.9n

0.9n × 100

percent of the samples are expected to be taken from the gap between the two hyper-
cubes and therefore rejected. Clearly, since the proportional volume of this gap grows
exponentially in the dimensionality of the random variable space, beyond some num-
ber of variables, rejection sampling becomes prohibitively slow and in the limit 100%
of the proposed samples are rejected.

2.3.2.4 Sampling by likelihood weighting (LW)

Rejection sampling is an inefficient method since many proposed particles are sim-
ply dropped. A better approach is to restrict the taken samples to the regions of the
space which are consistent with the evidence. In order to restrict the sampling to such
events, in LW sampling method, the observed values are fixed, and the hidden values
are sampled and weighted by the likelihood that they are consistent with the evidence.
What is returned by one iteration of LW sampling algorithm is a pair 〈ξ , w〉 containing
a particle and its weight (See Algorithm 6). Given the weight of each sampled particle,
the posterior probability can be approximated by,

p̂Ξ(y |E = e) = ∑
N
i=1 wi1I[ξi〈Y〉 = y]

∑
N
i=1 wi

,

where Ξ = {〈ξi, wi〉}N
i=1.

Algorithm 5: General rejection sampling.
procedure REJECTIONSAMPLING (

f (x) /*a (non-normalized) distribution from which direct sampling is hard*/,
g(x) /*a (non-normalized) distribution from which direct sampling is easy*/,
c /*a constant s.t. for all x, f (x)

c·g(x) ≤ 1/*)
output a particle generated for f (x).

repeat
Let x’ ∼ g(x)
Let u ∼ U (0, 1)

until f (x′)
c·g(x′) > u

return ξ
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Algorithm 6: LW particle generation (on a posterior distrib.) in a Bayesian net-
work

procedure LW-generate-particle (
B /*a Bayesian network over x = {X1, . . . , Xn} where indices indicate a

topological ordering*/,
E /*set of random variables that their values are determined by evidence s.t.

the value of Ei ∈ E is known to be VAL(Ei)*/ )

Let ξ be a particle that should be returned.
Let w← 1 be the weight of the returning particle.
for i = 1 to n do

if Xi 6∈ E then
ξ(Xi)← take a sample from p(Xi |ξ〈PA(Xi)〉)

else
ξ(Xi)← VAL(Xi)
w← w · p(Xi = xi |ξ〈PA(Xi)〉) /* particle’s weight is multiplied by the
likelihood of the known value.*/

end if
end for
return 〈ξ , w〉

2.3.2.5 Markov Chain Monte Carlo (MCMC)

The sampling methods that are used in practice are often based on the Markov chain
Monte Carlo mechanism (MCMC) [Gilks 2005]. In these methods, each sample is
obtained via a random walk that starts from the previous sample (and is therefore,
conditioned on the previous sample). Since,

p(x(t) | x(1), . . . , x(t−1)) = p(x(t) | x(t−1))

this mechanism clearly forms a Markov chain:
MCMC algorithms are constructed in such a way that the target distribution p(x)

is the (unique) equilibrium state (a.k.a steady state or stationary distribution) of the chain.
For this purpose,

1. The designed Markov chain should be irreducible (i.e. have a state space with a
single communicating class). This means that it should be possible to get to any
state from any state (via a finite number of transitions).

2. The designed Markov chain should be reversible (otherwise stated, it should sat-
isfy detailed balance), that is, for any pair of particles (i.e. states) x′ and x” the
following equality should hold:

p(x′)T(x′ → x”) = p(x”)T(x”→ x′) (2.7)

where T(x → y) is the probability of transition from x to y via an MCMC algo-
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rithm. It can be shown that if p satisfies detailed balance then p is a stationary
distribution [Wasserman 2013].

An intuition behind the success of a typical MCMC method is as follows: In high-
dimensional applications of probabilistic graphical models, the probability mass is
often concentrated on some connected regions which proportionally occupy a very
small volume of the (random) variable space. If an MCMC sampler is provided with
an initial sample (i.e. a point in the space where the distribution is non-zero), by means
of random walk, it follows the pattern of the distribution and is not “lost” in the sur-
rounding empty space. The price paid for this advantage property are the following
inherent shortcomings:

1. Dealing with particular classes of models, some MCMC methods may never
converge to the target distribution. This often happens when the distribution is
multi-modal with no random walk paths between non-zero probability states.
Luckily, in many models, such pathological examples often do not happen in
practice however, the following shortcoming is more serious.

2. Since consecutive samples are dependent, a large number of samples should be
taken to guarantee that the convergence to the target distribution takes place
with an acceptable approximation error. In other words, the mixing rate of the
Markov chain can be quite slow. Furthermore, in many models, detecting the
sufficient number of samples that are required to converge to the steady state
(within a particular approximation bound) may be a hard task, if not impossible.

The dependency between the consecutive samples entails another negative effect
as well: the dependence of the Markov chain to its initial state. Nonetheless, this
problem is often easy to solve. The reason is that as the number of drawn particles
in the chain grows, the dependence of the samples to the initial point reduces till
it becomes negligible. Therefore it is sufficient to throw away an initial number of
samples (e.g. the first 1000 samples). These discarded first particles are referred to as
burn-in samples (and the associated time, the burn-in period).

2.3.2.6 Metropolis-Hastings sampling (MH)

Metropolis-Hastings algorithm [Hastings 1970] is a popular and easy to implement
MCMC sampler. Let the (t − 1)-th sample drawn from a distribution p(x) via a
Metropolis-Hastings Markov chain be x(t−1). In order to generate x(t) (i.e the t-th
sample), the following two steps are executed:

1. A sample x′ is taken from a proposal distribution q(x| x(t−1)) from which samples
can be taken efficiently.

2. With probability,

a(x′|x(t−1)) = min

[
1,

p(x′) · q(x(t−1) | x′)
p(x(t−1)) · q(x′ | x(t−1))

]
(2.8)
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x′ is accepted i.e. returned as the next sample,

x(t) ← x′

otherwise it is rejected and consequently the last taken sample is returned as the
next sample,

x(t) ← x(t−1)

It should be noted that the existence of an acceptance ratio in equation 2.8 indicates an
important property that neither p nor q need to be normalized.

No restriction is imposed on the choice of the proposal distribution. Nonetheless,
if the chosen function is symmetric in the sense that,

q(x| x′) = q(x′| x)

Equation 2.8 will be simplified as below,

a(x′|x(t−1)) = min
[

1,
p(x′)

p(x(t−1))

]
(2.9)

In practice the chosen proposal, q(x| x(t−1)), is often an isotropic (multivariate) Gaus-
sian centered at x(t−1).

The detailed mechanism of Metropolis-Hastings method is presented in Algo-
rithm 7.

Convergence to the target distribution . In order to show that Metropolis-Hastings
sampling mechanism has the target distribution p(x) as its steady stead, the detailed
balance should hold. Here the probability of transition from state x(t−1) to state x′

(namely, T
(
x(t−1) → x′

)
is the probability that x′ is sampled from the proposition dis-

tribution conditioned on the information that the current state is x(t−1) (i.e. q(x′ | x(t−1)))
times the probability that the proposed new state is accepted (namely, a(x′ | x(t−1))):

T
(
x(t−1) → x′

)
= q

(
x′ | x(t−1)) · a(x′ | x(t−1))

Similarly,
T
(
x′ → x(t−1)) = q

(
x(t−1) | x′

)
· a
(
x(t−1) | x′

)
Therefore, the detailed balance (that is, equation 2.7) will be as below:

p(x′) · q
(
x(t−1) | x′

)
· a
(
x(t−1) | x′

)
= p(x(t−1)) · q

(
x′ | x(t−1)) · a(x′ | x(t−1))

or equivalently,
a(x′ | x(t−1))

a(x(t−1) | x′)
=

p(x′) · q
(
x(t−1) | x′

)
p(x(t−1)) · q

(
x′ | x(t−1)

)
Clearly, this condition is satisfied by equation 2.8 which completes the proof of correct
convergence to the target distribution.
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Algorithm 7: Metropolis-Hastings algorithm
procedure METROPOLISHASTINGS (

p(x) /* target distribution*/,
q(x | x∗) /*proposal distribution*/,
(x(0)), /*initial sample*/,
T /*number of samples to be taken*/)

output a sequence of T samples taken from p(x).

for t = 1 to T do
x′ ∼ q(x | x(t−1))
u ∼ U (0, 1)

if u ≤
p (x′) · q

(
x(t−1) | x′

)
p
(
x(t−1)

)
· q
(
x′ | x(t−1)

) then

/*Accept: */
x(t) ← x′

else
/*Reject: */
x(t) ← x(t−1)

end if
end for
return 〈x(0), . . . , x(T)〉

Advantages and disadvantages. Metropolis-Hastings is easy to implement. In case
it is tuned well, it shows good performance on a large range of target distributions.
Moreover, this method does not require any assumption or knowledge about the char-
acteristics of the target distribution. More specifically, Metropolis-Hastings treats the
target distribution as a black box that returns the function value associated with pro-
posed sample assignments. This property, arguably, makes Metropolis-Hastings the
most popular MCMC sampling method. Nonetheless, this method suffers from the
following two weaknesses:

1. The performance of the Metropolis-Hastings method is sensitive to the way the
proposal distribution is chosen and tuned. Choosing a good proposal is problem-
dependent. Intuitively, the best sampling performance occurs when the pro-
posal is as close (e.g. in terms of KL-divergence) to the target distribution as
possible. However, the problem is that finding such a distribution from which
samples can be taken easily is often not trivial (if even possible). As mentioned,
in practice, proposals are often chosen to be Gaussian. However, the variance
of the proposal is still a parameter that can significantly affect the performance
of the algorithm and requires being tuned. There are algorithms for automated
tuning of the aforementioned variance parameter. A famous approach [Roberts
et al. 1997] suggests testing several proposal variances and choosing the one that
leads to an acceptance rate closest to 0.24. However, finding an optimal param-
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eter is still an art that in many applications may require multiple manual trial
and error.

2. The performance of Metropolis-Hastings algorithm on models studied in the
present work, i.e. piecewise continuous distributions, can in particular be unsat-
isfactory. The reason is that near the border of partitions, the difference between
the smooth proposal distributions and the disconnected target distributions is
often significant.

3. Due to significant number of rejected samples and consequently, repeated par-
ticles, the correlation between the particles generated by Metropolis-Hastings
method is notoriously high. This means that in order to approximate the tar-
get distribution, a significant number of samples may be required. For instance,
millions of Metropolis-Hastings particles may be needed to produce a same ap-
proximation that a few thousand or hundred rejection sampling particles do.

2.3.2.7 Gibbs sampling

Gibbs sampling [Casella and George 1992] is a mechanism by which, the problem of
sampling from a multidimensional distribution is reduced to sampling from univari-
ate distributions which is essentially simpler. In this MCMC method, the random
variables are sampled in turn. That is, in order to generate a particle from an n-
dimensional target distribution, n steps are required. In each step, a random variable
is sampled conditioned on the current instantiation of the other variables.

A more formal description is follows: Let the target distribution be p(X1, . . . , Xn)
and the initial (or current) sample assignment be (x1, . . . , xn). In the i-th step of Gibbs
sampling, Xi is sampled from p(Xi | x\i) or in the expanded notation,

xi ∼ p(Xi |X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . Xn = xn)

Note that since the conditional and joint distributions are proportional, it is sufficient
to sample from the target (joint) distribution where all variables except one are instan-
tiated with their current values:

xi ∼ p(x1, xi−1, Xi, xi+1, . . . xn)

The detailed mechanism is clarified by Algorithm 8.
Clearly, compared to a multivariate distribution, sampling from a univariate dis-

tribution is simpler. For the latter task, the inverse-transform sampling method ex-
plained in Section 2.3.2.1 and elaborated in Algorithm 2 can be utilized.

Advantages and disadvantages. The main advantages of Gibbs sampling are the fol-
lowing two characteristics:

1. Despite being an MCMC method, (compared to methods such as MH), in prac-
tice the correlation of the nearby Gibbs samples are often low.
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Algorithm 8: Gibbs sampling algorithm
procedure GIBBSSAMPLER (

X = {X1, . . . , Xn}, /* set of variables where indices indicate the ordering*/,
p(·), /*An n-dimensional target distribution*/,
x(0) /*initial state (particle) 〈x(0)1 , . . . , x(0)n 〉*/,
T /*number of required samples*/ )

for t = 1 to T do
//initializing variables of the new time step due to their previous values:
〈x(t)1 , . . . , x(t)n 〉 ← 〈x(t−1)

1 , . . . , x(t−1)
n 〉

//taking new samples for variables due to their order:
for i = 1 to n do

x(t)i ← sample X(t)
i from p(Xi | x(t)1 , . . . , x(t)i−1, x(t)i+1, . . . , x(t)n ) /*note that despite

their indices, x(t)i+1 to x(t)n are not updated from time step (t− 1).*/
end for

end for
return 〈〈x(0)1 , . . . , x(0)n 〉, . . . , 〈x(T)1 , . . . , x(T)n 〉〉

2. Gibbs sampler (in its basic version, at least) required no parameter setting or
tuning. This leads to robust and fully automated Gibbs samplers.

To justify the first advantageous characteristic, it should be pointed out that Gibbs
sampler can be regarded as a special case of Metropolis-Hastings algorithms in which
the proposal distribution is a partially instantiated version of the target distribution
itself. As a result, the acceptance rate of a Gibbs proposed samples (as in equation 2.8)
is always 1.0 and therefore proposed samples are always accepted i.e. the consecutive
samples are not repeated.

Nonetheless, Gibbs sampling has disadvantageous properties as well:

1. In the basic or exact Gibbs sampling, the univariate sampling that happens in
each step relies on inverse-transform sampling which in its turn, requires the
computation of a cumulative distribution function. In most cases, the integra-
tion, required for the latter task cannot be computed analytically. This short-
coming, severely limits the applications of exact Gibbs sampling.

2. The aforementioned problem can be avoided by approximating the univariate
sampling operations via arbitrary univariate sampling methods (such as rejec-
tion sampling, Metropolis-Hastings, etc.) Nonetheless, since the inner samplers
typically require parameter tuning, such a solution may invalidate the desired
characteristic of exact Gibbs sampling that does not involve any tuning.

3. Since the number of steps in Gibbs sampling is equal to the dimensionality of
the variable space, its complexity grows linearly in the number of random vari-
ables. Keeping in mind that (either exact or approximate) computation of CDFs
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X

Y

Figure 2.4: Joint distribution of X and Y. The distribution is only positive in dark
regions. This is a pathological example where Gibbs sampling cannot move between
modes.

as well as their inverse functions (which is also required for inverse transform
sampling) per sample per random variable is computationally costly, Gibbs sam-
plers are typically slow and hard to implement.

4. The transitions that Gibbs sampling MCMC mechanism relies upon are random
walks that are in parallel to the basis vectors of the variable space. Such move-
ments do not necessarily end in an irreducible Markov chain. A simple patho-
logical example is depicted in Figure 2.4 where the target distribution forms
detached islands of positive probability that are not accessible by the aforemen-
tioned random walk pattern. Clearly, in such scenarios Gibbs is trapped in one
region and never converges to the target. This problem may be avoided by tricks
such as rotation of basis vectors.

We seek to address the first shortcoming in Chapter 5 for a large family of models.
As a result of this contribution, the second shortcoming is avoided and the gravity of
the third shortcoming is lessened.

2.3.2.8 Hamiltonian Monte Carlo (HMC)

In Section 2.3.2.6 is was mentioned that a major shortcoming of Metropolis-Hastings
MCMC algorithm is the strong correlation of the nearby samples. This problem is
a direct consequence of random walk behavior. More specifically, the MH proposed
transitions in the Markov chain are often close to the current state since far apart pro-
posed transitions are often rejected. This is due to the fact that the proposal density
required by Metropolis-Hastings method often does not follow the changes in the cur-
vature of the target distribution.

Hamiltonian Monte Carlo (HMC) (which was originally called hybrid Monte Carlo
[Duane et al. 1987]) addresses this issue by introducing a gradient-aware mechanism
for proposing transitions. The gradient of the target distribution indicate its curvature
and the directions that lead to higher probability areas. As a result, the proposed HMC
transitions often lie quite distant in the variable space while in contrast to Metropolis-
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Hastings method, a reasonably high acceptance ratio is often maintained for these
transitions.

Following the gradient should be such that the detailed balance condition (which
is required for correct sampling) holds [Neal 2011]. To satisfy this requirement, the
Hamiltonian dynamics is utilized.

Hamiltonian dynamics. Hamiltonian is a concept originated from the field of me-
chanics. Hamiltonian mechanics is an alternative reformulation of the classic me-
chanics in which the state of a system in an n-dimensional space is determined by a
position vector (a.k.a. canonical coordinates)

q = (q1 . . . , qn)

and a momentum vector (a.k.a conjugate momenta)

p = (p1 . . . , pn)

Although we are interested in non-physical MCMC applications of Hamiltonian dy-
namics, to motivate the discussion, consider the dynamics of a physical system that
consists of a mass particle sliding over a frictionless manifold (e.g. a surface in a 3D
space). The potential energy of the particle, U(·), is a function of the position vector
(e.g. in a 2D space, it is often defined proportional to the height of the surface). The
kinetic energy, K(·), is often defined as,

‖p‖2/2m

where m is the mass of the particle. For further simplicity, it is often assumed that the
particle is a unit mass, leading to,

K(p) =
‖p‖2

2
(2.10)

Clearly, in this case, the momentum and velocity are the same.
The Hamiltonian H(·) of the system, is the summation of the potential and kinetic

energies (i.e. system’s total energy),

H(q, p) = U(q) + K(p)

The evolution of the system over time, t, is determined by the following partial deriva-
tives of the Hamiltonian which are known as Hamiltonian equations of motion (or sim-
ply, Hamiltonian equations):

dqi

dt
=

∂H
∂pi

(2.11)

dpi

dt
= −∂H

∂qi
(2.12)
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where i is in 1, . . . , n.

Hamiltonian conservation. According to the above Hamiltonian equations, the Hamil-
tonian of a system remains invariant over time. This can easily be verified as follows:

dH
dt

=
n

∑
i=1

[
dqi

dt
∂H
∂qi

+
dpi

dt
∂H
∂pi

]
=

n

∑
i=1

[
∂H
∂pi

∂H
∂qi

+
dpi

dt
∂H
∂pi

]
, by (2.11)

=
n

∑
i=1

[
∂H
∂pi

∂H
∂qi
− ∂H

∂qi

∂H
∂pi

]
, by (2.12)

= 0.

Volume preservation (volume conservation). Another important property of Hamil-
tonian dynamics is that it conserves the volume V of any region R in the space (q, p)
(namely, phase space) in time. That is, according to Hamiltonian dynamics, a region
may move and change its shape but its total volume remains constant.

In the context of Hamiltonian Monte Carlo (that will be introduced shortly), this
property means that we do not need to take into account any change of volume in the
acceptance probability of Metropolis-Hastings updates [Neal 2011].

Let us take a closer look at the volume preservation. Suppose that time evolution
of a system is determined by the Hamiltonian equations of motion. According to our
notation, if at time t = 0 a phase space point is at (q(0), p(0)), then at time t = τ , it
is evolved to (q(τ), p(τ)). Time evolution is equivalent to the following coordinate
transformation T, (

q(0), p(0)
) T−−−→

(
q(τ), p(τ)

)
If under T, a region volume V is mapped to V′, then according to the Hamiltonian
volume preservation property,∫

V′
dq(τ) dp(τ) =

∫
V

dq(0) dp(0) (2.13)

On the other hand, by the definition of Jacobians,∫
V′

dq(τ) dp(τ) =
∫

V
|J| dq(0) dp(0) (2.14)

where,

|J| :=
∣∣∣∣det

∂q(τ)∂p(τ)
∂q(0)∂p(0)

∣∣∣∣
By substituting (2.14) in (2.14) we get |J| = 1. Therefore, volume preservation holds
if and only if the absolute value of the determinant of the Jacobian matrix of trans-
formation T is equal to 1. In chapter 6, we will leverage this property to prove that
for our proposed generalisation of the Hamiltonian Monte Carlo algorithm volume
preservation still holds.

Hamiltonian Monte Carlo algorithm. Provided with sufficient background on the
properties of Hamiltonian equations of motion, we are ready to present the sampling
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Algorithm 9: Hamiltonian Monte Carlo algorithm
procedure HAMILTONIANMONTECARLO (

q0 /*current sample*/,
U /*potential function*/,
L /*number of leapfrog steps*/,
ε /*leapfrog step size*/)

output next sample

q← q0
p ∼ N (0, 1)
H0 ← ‖p‖2/2 + U(q)
for l = 1 to L do

/* Half-step evolution of momentum: */
p← p−ε∇U(q)/2

/* Full-step evolution of position: */
q← q +εp

/* Half-step evolution of momentum: */
p← p−ε∇U(q)/2

end for
H ← ‖p‖2/2 + U(q)
∆H ← H − H0
u ∼ U (0, 1)
if u < e−∆H then

return q
else

return q0
end if

mechanism. Suppose sampling from an n-dimensional continuous probability distri-
bution Pr(q) is intended.

To start with, the variable space is augmented by an n-dimensional momentum
variable vector p.

A simple (but not unique) way to define a Hamiltonian is to choose the kinetic
energy according to 2.10 and let the potential energy be the negation of the logarithm
of the target distribution:

U(q) = − log
(

Pr(q)
)

(2.15)

where the probability measure is denoted by Pr rather than p to avoid conflation and
ambiguity.

In order to generate a sample using HMC, firstly an assignment is proposed for
the momentum variables using a newly introduced momentum distribution Pr(p).
This distribution is chosen in such a way that it can be sampled easily. In practice, a
(multivariate) Gaussian is often the choice.
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Subsequently, using the Hamiltonian equations of motion, for both p and q new
proposals are generated. In order to do so, we should let the system develop for a
fixed time interval I. Starting from the current states of p and q, by definitions 2.11
and 2.12 and the way the kinetic and potential energies are chosen (equations 2.10 and
2.15), the trajectory of movement is governed by the following differential equations,

dqi

dt
= pi (2.16)

dpi

dt
= −∂U

∂qi
=

∂ log(Pr(qi))

∂qi
(2.17)

The above constraints are often not solvable in closed form. However, they can
be effectively approximated by means of discretization methods. One of the most
famous ways to approximate differential equations is Euler’s method [Butcher 2000].
However, it is shown that leapfrog method leads to much better results [Neal 2011]. In
the latter method, the total transition time I is divided into L steps each of which takes
an step-size ε. That is,

I = L×ε

where L and ε are fixed parameters. In other words, the system trajectory is approxi-
mated with L pieces and in each piece, the location and momentum vectors are inter-
changeably evolved for a time period ε. The leapfrog mechanism in each time period
(step-size) ε is as follows:

1. Half-step evolution of momentum. The value of q is kept fixed and the (proposed)
value of p is modified as follows (p is evolved for a period of ε/2):

p← p− ε
2
· ∇U(q)

2. Full-step evolution of position. p is left unchanged and q is evolved for a time
period of ε.

q← q +ε · p

3. Half-step evolution of momentum. Step 1 is repeated.

p← p−ε · ∇U(q)/2

The generated proposal is fed to a Metropolis-Hastings algorithm and will be the next
sample in case accepted. The formal HMC mechanism is illustrated by Algorithm 9.

Advantages and disadvantages. The main advantage of Hamiltonian Monte Carlo
(HMC) is that (in case it is tuned well) the correlation between the nearby samples
is small, its corresponding Markov chain mixing rate is high and consequently, com-
pared to Metropolis-Hastings algorithm, convergence to the target distribution takes
place with a smaller number of sampled particles.

Nonetheless, this method suffers from the following shortcomings:
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1. Unlike other sampling mechanisms that have versions for continuous and dis-
crete state space, the Hamiltonian Monte Carlo can exclusively be applied to
continuous distributions. As a potential solution to this restriction, it is sug-
gested to approximate discrete distributions with continuous state piecewise
distributions [Pakman and Paninski 2013].

2. Unlike Metropolis-Hastings, HMC requires to be provided with the gradient of
the target distribution. In many applications, this extra information may not be
available.

3. The performance of HMC algorithm depends on the choice of L and ε. In prac-
tice, these parameters are often not easy to adjust. As a matter of fact, compared
to Metropolis-Hastings, HMC is often much more sensitive to parameter tuning
[Homan and Gelman 2014].

Roughly speaking, parameter ε controls the simulation accuracy of the Hamiltonian
equations of motion while the product of L and ε affects the distance between the
current and the proposed state.

If L and ε are both chosen too small, then the random walk behavior is not re-
solved and the decorrelation of the neighboring particles that is the raison d’être of
this method does not taken place.

If either parameter (and in particular, ε) is chosen too large then the simulation of
Hamiltonian dynamics will not be sufficiently accurate which leads to many rejection
samples that in its turn negatively affects the mixing rate due to the abundance of
consecutive repeated samples.

If L is very large but ε is sufficiently small, then the simulation accuracy and the
decorrelation of samples will be both satisfactory; nonetheless, the computation costs
will be considerable and the time required to generate a single sample can be long. As
a result, despite low correlation between nearby samples, in this case the convergence
to the target distribution can be slow.

The optimal choice of parameters depends on the characteristics of the target dis-
tribution. If the rate of changes in the target distribution (and consequently, the vari-
ations in its corresponding potential energy function) is too high (e.g. the function
contains several anomalies rather than following a smooth trend), the leapfrog mech-
anism should be fine-tuned (i.e. requires a smaller step-size, ε). In the limit, if the
function is not smooth, regardless of the choice of ε, the simulation of the Hamilto-
nian dynamics would be inaccurate and can lead to significant a number of rejections.
The piecewise distributions that are in the focus of this thesis lie in the latter group.

2.3.3 Other approximate inference methods

Besides sampling methods, there are other categories of approximate inference that
(since we do not require them in the next chapters) are not covered in detail. Nonethe-
less, for the sake of completeness we briefly mention the most important ones:
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2.3.3.1 Direct approximation of query

In these methods the query i.e. the posterior distribution p(Z|E) of the latent variable
Z is directly approximated in a closed form.

• Variational Bayesian methods. Variational Bayes approximates the posterior
p(Z | E) by a simpler distribution Q(Z) that belong to a parametric class of func-
tions with an exact analytical solution [Jordan et al. 1999], [Wainwright and Jor-
dan 2008].

The main task is to find a variational distribution Q(Z) that is as similar as pos-
sible to the target posterior therefore, the dissimilarity between Q and P (say,
D(Q || P)) has to be minimized. The most commonly used dissimilarity (or dis-
tance) function is the cross-entropy (Kullback-Leibler (KL) divergence):

DKL(Q || P) = ∑
Z

Q(Z) log
Q(Z)

p(Z|E)

• Expectation propagation (EP), is an iterative method for proving approxima-
tions to probability distributions [Minka 2001]. Similar to variational methods,
EP techniques are based on minimizing the KL-divergence. However in the lat-
ter methods, the divergence is calculated in a reverse form. That is, while in
variational methods DKL(Q || P) is calculated and minimized, EP methods are
based on DKL(P ||Q) where P is the target distribution and Q is its desired ap-
proximation.

2.3.3.2 Message passing based approximate inference

In Section 2.3.1, an exact inference technique based on message passing on polytrees
was introduced. The following approximate message passing approaches are based
on this technique.

• Propagation-based approximation. In these techniques the messages are gen-
erated in an exact manner and approximation takes place in their propagation.

– Loopy belief propagation. In this approach, the assumption that the un-
derlying graph is a polytree is removed. Therefore, although messages are
exact, they are propagated through graphs containing loops (undirected
cycles) in an iterative manner, resulting in loopy belief propagation. The al-
gorithm is motivated by the success of turbo codes [McEliece et al. 1998]
which is shown to be expressible by this algorithm [Murphy 2001].

– Generalized loopy belief propagation (GBP). Based on Kikuchi algorithm
[Kikuchi 1951] and via joining a few variables, the generalized loopy BP
methods try to reduce the number of graph loops and generate a graph
that is more similar to a polytree. The complexity of GBP algorithms is ad-
justable and they can be significantly more accurate than loopy BP [Yedidia
et al. 2000].
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• Propagation with approximate messages. In the second approach, the mes-
sages themselves and/or inner structure of subnetworks within clusters are sim-
plified to a more manageable form. In Bayesian inference, two commonly used
approaches are variational message passing (VMP) and moment matching. Both
approaches factorize a message and use KL-divergence to find the best approx-
imation.

2.4 Summary

This chapter covered basic definitions, notation and background material concerning
probabilistic inference that is required to present our contributions for inference on
piecewise graphical models. It dealt with the representation of probabilistic graphi-
cal models as well as a spectrum of exact and approximate inference techniques that
can be used on such models. In particular, MCMC based inference techniques where
studied in more detail. The reason is that the inference methods that will be proposed
by this thesis are based on Gibbs sampling (see Chapters 4 and 5) and Hamiltonian
Monte Carlo (see Chapter 6).

Nonetheless, before making our contributions, we still require to formally define
piecewise functions and discuss their characteristics and corresponding operations.
We should also introduce the data structures that can be utilized to represent piece-
wise functions as well as the algorithms that can be used to simplify such data struc-
tures. These remaining background materials are covered by the next chapter.



Chapter 3

Piecewise Data Structures and
Symbolic Operations

The previous chapter provided sufficient background material for probabilistic in-
ference in graphical models. In this chapter we offer background material for the
symbolic presentation, manipulation and simplification of piecewise continuous func-
tions. The formal definition of piecewise functions is presented in Section 3.1. Sec-
tion 3.2 is concerned with symbolic operations where their output or at least one of
their operands is a piecewise expression. Theses operations will be frequently used
in the next chapters where our actual contributions regarding the probabilistic infer-
ence in piecewise graphical models are presented. Section 3.3 introduces the data
structures that are used (or may be used) to model piecewise function. Finally, in Sec-
tion 3.4 we briefly introduce the existing tools for manipulation of symbolic formulas,
as well as checking the satisfiability of first order logic predicates. These symbolic
tools can in particular be used to simplify piecewise data structures by means of elim-
inating unsatisfiable case-statements.

3.1 Piecewise functions

A function is piecewise if it is in the following general form,

f =
m

∑
i=1

I[φi(x)] · fi(x) (3.1)

where I[·] denotes the indicator function1 and the constraints φ1 to φm are assumed to
be pairwise exclusive (w.r.t. all variable valuations), that is,(

φi(x) ∧φ j(x)
)
≡ ⊥ ∀i 6= j, ∀x

Since the space of variables, x, is partitioned by the constraints, each φi is alterna-
tively referred to as a partition (also known as region). In case the constraints are affine
functions, a partition may also be called a polytope.

1That is, if a boolean expressionφ is true then I[φ] returns 1 otherwise 0.

47
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Clearly, if for a variable assignment x, a constraint φi(x) is satisfied (where i ∈
{1, . . . , m}) then the function f returns the value of its i-th sub-function,

φi(x) ≡ > ⇐⇒ f (x) = fi(x)

Alternatively, equation 3.1 can be stated in the following expanded form:

f =


f1(x) ifφ1(x)
...

...

fm(x) ifφm(x)

(3.2)

In the above relations, boolean expressions φ1 to φm are called constraints (or sub-
domains) and f1 to fm are referred to as sub-functions.

For instance in Figure 1.4 (Chapter 1) the (non-normalized) posterior is the follow-
ing 4-piece function: 

0.12 · Nx,y(0, Σ) if (y > x), (y < 0)

0.28 · Nx,y(0, Σ) if (y > x), (y ≥ 0)

0.18 · Nx,y(0, Σ) if (y ≤ x), (y < 0)

0.42 · Nx,y(0, Σ) if (y ≤ x), (y ≥ 0)

(3.3)

whereNx,y(0, Σ) is the bivariate normal distribution of x and y centered at 0 = [0, 0]T

and with covariance matrix Σ = 10I2.
The constraints φ1 to φm are not necessarily exhaustive collectively. In case they

are, that is, if for any variable valuation x,

m∨
i=1

φi(x) ≡ >

then f is a total function otherwise it is partial. Throughout, by default we assume
that the piecewise functions are total functions except when otherwise stated.

By the i-th case statement of a piecewise function in the form 3.1 we refer to I[φi] · fi.
A piecewise function with m case-statements is called an m-piece function.

In general the variable space over which piecewise functions are defined can con-
tain continuous, discrete and boolean variables. However, since the focus of this thesis
is on piecewise continuous probability functions, unless otherwise stated, we assume
that the aforementioned variable space exclusively contains real variables. General-
ization of most discussions and presented algorithms to the discrete/continuous hy-
brid case is straightforward.

3.1.1 C-piecewise D function

Here we present a more restricted but important class of piecewise functions. Let C
and D be two families of functions. We say that a function f is a C-piecewise D function
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(e.g. linear-piecewise polynomial, etc.) if the sub-functions ( f1 to fm) are members of
the family D and each constraintφi is a boolean expression in the form of an inequality
or a conjunction of inequalities,

φi = (ϕi,1 ≶ 0) ∧ (ϕi,2 ≶ 0) ∧ · · ·

where ≶ stands for >, <, ≤ or ≥ and each φi, j is an expression of type C. For in-
stance the function provided in the previous example (equation 3.3) is linear-piecewise
exponential (or more specifically stated, linear-piecewise Gaussian).

The predicates (φi, j ≶ 0) are called atomic constraints (a.k.a. atomic inequalities). It
should be pointed out that throughout we use piecewise structure to represent piece-
wise continuous probability density functions. The value of such functions on the
border of partitions does not matter (since we assume that the total measure on the
partitioning borders is zero). As a result, we often do not distinguish between strict
and non-strict inequalities.

3.2 Piecewise Calculus

Following [Sanner et al. 2011; Sanner and Abbasnejad 2012], in this subsection some
useful piecewise operations are presented and discussed. These operations are of par-
ticular importance in the context of probabilistic inference over piecewise continuous
models.

3.2.1 Piecewise/non-piecewise operations

Let f be a piecewise function defined by equation 3.1 (or 3.2). and c be a non-piecewise
function2. As the following formulas illustrate, the elementary operations that involve
c and f are piecewise with the same partitions that are associated with the piecewise
operand f .

c · f =


c · f1 ifφ1
...

...

c · fm ifφm

c + f =


c + f1 ifφ1
...

...

c + fm ifφm

3.2.2 Piecewise/piecewise elementary operations

Throughout this thesis, whenever instead of the elementary operations +, −, ∗ and
/, “o” symbols ⊕, 	, ⊗ and � are used respectively, that is to emphasize that both
sides of the binary operation are piecewise functions. Application of an elementary
binary operation over an N-piece and an M-piece operands results in an N×M-piece

2Technically speaking, any function is a piecewise function however, when a function is associated
with a single partition (i.e. its only sub-domain is its domain), we consider it a non-piecewise function.
Therefore, what we refer to as non-piecewise functions are in fact 1-piece functions.
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structure. This is illustrated in equations 3.4 to 3.7 were elementary operations over a
couple of 2-piece functions lead to 4-piece outputs.

{
f1 ifφ1

f2 ifφ2
⊕
{

g1 if ψ1

g2 if ψ2
=


f1 + g1 ifφ1 ∧ψ1

f1 + g2 ifφ1 ∧ψ2

f2 + g1 ifφ2 ∧ψ1

f2 + g2 ifφ2 ∧ψ2

(3.4)

{
f1 ifφ1

f2 ifφ2
	
{

g1 if ψ1

g2 if ψ2
=


f1 − g1 ifφ1 ∧ψ1

f1 − g2 ifφ1 ∧ψ2

f2 − g1 ifφ2 ∧ψ1

f2 − g2 ifφ2 ∧ψ2

(3.5)

{
f1 ifφ1

f2 ifφ2
⊗
{

g1 if ψ1

g2 if ψ2
=


f1 × g1 ifφ1 ∧ψ1

f1 × g2 ifφ1 ∧ψ2

f2 × g1 ifφ2 ∧ψ1

f2 × g2 ifφ2 ∧ψ2

(3.6)

{
f1 ifφ1

f2 ifφ2
�
{

g1 if ψ1

g2 if ψ2
=


f1/g1 ifφ1 ∧ψ1

f1/g2 ifφ1 ∧ψ2

f2/g1 ifφ2 ∧ψ1

f2/g2 ifφ2 ∧ψ2

(3.7)

Indeed (the constraints of) many produced case-statements may be unsatisfiable (cor-
responding to empty partitions) and therefore discarded. As a result, N ×M is only
an upper bound on the number of output pieces.

From relations 3.4 to 3.7 it can also be noticed that a family of C-piecewise D func-
tions is closed under an elementary operation if and only if the family of functions D
is closed under that operation (no limitation is imposed on C).

3.2.3 Maximum and Minimum

As it is evident from formula 3.8, maximum (or minimum) of n non-piecewise ex-
pressions is a piecewise expression with (at most) n cases-statements each of which is
associated with a constraint that is the combination of (at most) n− 1 atomic inequal-
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ities.

max(h1, . . . , hn) =


h1 if (h1 > h2) ∧ (h1 > h3) ∧ . . . ∧ (h1 > hn)
...

hn if (hn > h1) ∧ (hn > h2) ∧ . . . ∧ (hn > hn−1)

(3.8)

These operations can be executed over piecewise functions as well. Formula 3.9 illus-
trates that maximum (or minimum) of a pair of N and M-piece functions can contain
(up to) 2M · N case-statements.

max

({
f1 ifφ1

f2 ifφ2
,

{
g1 if ψ1

g2 if ψ2

)
=



f1 ifφ1 ∧ψ1 ∧ ( f1 > g1)

g1 ifφ1 ∧ψ1 ∧ ( f1 ≤ g1)

f1 ifφ1 ∧ψ2 ∧ ( f1 > g2)

g2 ifφ1 ∧ψ2 ∧ ( f1 ≤ g2)

f2 ifφ2 ∧ψ1 ∧ ( f2 > g1)

g1 ifφ2 ∧ψ1 ∧ ( f2 ≤ g1)

f2 ifφ2 ∧ψ2 ∧ ( f2 > g2)

g2 ifφ2 ∧ψ2 ∧ ( f2 ≤ g2)

(3.9)

Formula 3.9 also shows that a family of C-piecewise D functions is closed under
min/max operation if D ⊂ C (hence ( fi ≶ gi) ∈ C). For instance, linear-piecewise
polynomials are not closed under min and max operations but linear-piecewise linear
functions and polynomial-piecewise polynomials are closed.

3.2.4 Comparisons

Comparison based operations are closely related to min/max operations. For in-
stance, formula 3.10 represents the indicator of greater (>) comparison where the
operands are 2-piece functions.

I
[{

f1 ifφ1

f2 ifφ2
>

{
g1 if ψ1

g2 if ψ2

]
=



1 ifφ1 ∧ψ1 ∧ ( f1 > g1)

0 ifφ1 ∧ψ1 ∧ ( f1 ≤ g1)

1 ifφ1 ∧ψ2 ∧ ( f1 > g2)

0 ifφ1 ∧ψ2 ∧ ( f1 ≤ g2)

1 ifφ2 ∧ψ1 ∧ ( f2 > g1)

0 ifφ2 ∧ψ1 ∧ ( f2 ≤ g1)

1 ifφ2 ∧ψ2 ∧ ( f2 > g2)

0 ifφ2 ∧ψ2 ∧ ( f2 ≤ g2)

(3.10)
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3.2.5 Substitution

Substituting a variable x of a non-piecewise (potentially multivariate) function h by
an m-piece function f ,

f =


f1 ifφ1
...

...

fm ifφm

,

leads to a piecewise function with (at most) m pieces.

h|x← f =


h|x← f1 ifφ1
...

...

h|x← fm ifφm

(3.11)

Similarly, substituting a variable in an n-piecewise function g by an m-piece func-
tion f leads to a piecewise function with (at most) m× n pieces since with respect to
3.11, each of the n partition of g can be divided to m pieces.

3.2.6 Integration

We only consider the definite integration of linear-piecewise functions over interval
(−∞,+∞) which is required for the marginalization of random variables while gen-
eralization to other cases is straight-forward. Built on [Sanner and Abbasnejad 2012],
in order to integrate a linear-piecewise function, it is sufficient to sum up the integrals
of its case statements, ∫ ∞

−∞
m

∑
i=1

I[φi] · fi dx =
m

∑
i=1

∫ ∞
−∞ I[φi] · fi dx

Therefore, we only focus on the integration of a single case-statement,∫ ∞
−∞ I[φi] · fi dx

Without loss of generality, letφi be a conjunction of simpler constraints:

φi := ψi ∧ψ′i

where ψi does not involve variable x and ψ′i is the conjunction of atomic constraints,

ψ′i := (x > Li,1) ∧ . . . ∧ (x > Li,ni) ∧ (x < Ui,1) ∧ . . . ∧ (x < Ui,mi)

which are either in the form x > Li, j (or x ≥ Li, j) or in the form x < Ui, j (or x ≤ Ui, j)
where Li, j and Ui, j are expression that do not involve x. We do not differentiate be-
tween strict and non-strict inequalities since they do not affect the result of integra-
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tion.3

∫ ∞
−∞ I[φi] · fi dx =

∫ ∞
−∞ I

 ni∧
j=1

(x > Li, j)
mi∧

k=1

(x < Ui,k)
∧
ψi

 · fi dx

Sinceψi is not a function of x, it can be pushed outside the integral. On the other hand
the lower and upper integration bounds are determined by the maximum of Li, j and
minimum of Ui, j respectively,

LB = max(Li,1, . . . , Li,ni) UB = min(Ui,1, . . . , Ui,mi)

However, since the lower and upper bounds are symbolic, the final result should be
multiplied by I[LB ≤ UB] to guarantee that the former is not higher than the latter.

∫ ∞
−∞ I[φi] · fi dx = I[ψi] ·

∫
I

 ni∧
j=1

(x > Li, j)
mi∧

k=1

(x < Ui,k)

 · fi dx

= I[ψi] ·
∫ min(Ui,1 ,...,Ui,mi )

max(Li,1 ,...,Li,ni )
fi dx⊗ I[LB ≤ UB]

Note that in the above formula, the latter multiplication is represented by⊗ to indicate
that its both sides are piecewise functions. Therefore, the final result is as follows:

∫ ∞
−∞ I[φi] · fi dx = I[ψi] ·

∫ fi dx

∣∣∣∣∣
min(Ui,1 ,...,Ui,mi )

	
∫

fi dx

∣∣∣∣∣
max(Li,1 ,...,Li,ni )


⊗ I[min(Ui,1, . . . , Ui,mi) > max(Li,1, . . . , Li,ni)] (3.12)

which is a piecewise function (by equations 3.8, 3.10 and 3.11). To clarify the process
we present an example:

Example 2. Suppose that symbolic computation of the following case-statement integration
is desired.∫ ∞

−∞
[

x3 + xy if (x > 3), (x > y + 1), (x < 2y− 7z), (−yz > 1), (y > 0)
]

dx

For readability, expressions that determine the lower/upper bound are colored blue and green
while constraints that do not involve the integration variable x are colored red. By equa-
tion 3.12, this integral is equal to,

I[(−yz > 1) ∧ (y > 0)] ·
[ ∫ 2y−7z

max{3, y+1}
x3 + xy dx

]
⊗ I[2y− 7z > max{3, y + 1}]

The number of pieces in the integral of a piecewise function f can grow exponen-

3We assume the integrated function does not involve Dirac deltas.
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tial in the number of partitions in f . The following proposition shows that this growth
is also affected by the atomic constraints in each partition.

Proposition 2 (Complexity of piecewise integration). Let f be an N-piece function where
the number of atomic inequalities in each of its case-statements is bound by k. The upper bound
on the number of pieces in the integral of f (w.r.t. a variable x, as in equation 3.12) is (k2/4)N .

Proof. It suffices to show that the upper bound on the number of pieces in the integral
of a single partition (say, i-th partition) is L = K2/4. Because then by mathematical
induction it can easily be shown that the number of pieces in the summation of N,
L-piece functions is LN which will complete the proof.

Consider the following function,

I[ψi] ·
(∫

fi dx

∣∣∣∣∣
UB

−
∫

fi dx

∣∣∣∣∣
LB

)
· I[UB > LB] (3.13)

where LB and UB are uninstantiated variables.
According to the discussion presented in Section 3.2.5, the following couple of

substitutions,

LB← max(Li,1, . . . , Li,ni) UB← min(Ui,1, . . . , Ui,mi)

in (3.13) leads to a piecewise expression with ni ×mi partitions. This function equals
the equation (3.12). Therefore the upper bound on the number of pieces in the integral
of the i-th partition is ni ·mi.

According to the assumption, the number of atomic constraints in the i-th partition
is k. Therefore, the number of atomic constraints that involve x cannot exceed k.

ni + mi ≤ k

The equality happens when ψi does not contain any constraints. In this situation, if
ni = mi = k/2 then ni ·mi (i.e. the number of partitions in 3.13) is maximized to k2/4
which is the intended result.

In order to conduct exact inference on piecewise smooth graphical models, one
requires to conduct multiple integrals in closed-form since such integrations are re-
quired for analytical multivariate marginalization. Nonetheless, Proposition 2 shows
that such computations can rapidly become intractable, which severely restricts the
application of exact inference on a high-dimensional piecewise models.

3.3 Representation of piecewise functions

As already mentioned, binary operations over piecewise functions may lead to an ex-
ponential growth in the number of output case-statements. In practice, maintaining
a large list of case-statements might be prohibitively expensive. A more severe prob-
lem is the time complexity of the evaluation of such data structures which also grows
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exponentially (in the number of binary operations). The reason is that in the naive
representation, with respect to each variable assignment vector, the constraints asso-
ciated with case-statements should be evaluated one by one until the activated parti-
tion is found. This method clearly requires redundant computations. For instance, the
product of an M-piece and an N-piece functions leads to M · N case statements. As
a result in the naive representation, finding the activated sub-function requires M · N
evaluations. However, more efficient data structures do not require more than M + N
evaluations since to find the activated sub-function of the product it is sufficient to
find the activated sub-functions of the operand functions.

Decision diagrams (DDs) are data structures with an evaluation time complexity
that remains linear in the number of binary operations. In particular, in the context of
this thesis, we should highlight a particular DD known an extended algebraic decision di-
agram (XADD) which is suitable for representation of piecewise continuous functions.
The XADD data structures (introduced by [Sanner et al. 2011]) are compact represen-
tations motivated by algebraic decision diagrams (ADDs) [Bahar et al. 1997] that in their
own turn, generalize the concept of Binary decision diagrams (BDDs) [Lee 1959].

Since many properties are in common among these data structures, in this subsec-
tion we firstly introduce BDDs and ADDs (in Sections 3.3.1 and 3.3.2 respectively) and
then deal with XADDs in Section 3.3.3. Finally, Section 3.3.4 deals with other decision
diagrams that although not used in this thesis, may find potential usage in the context
of probabilistic inference.

3.3.1 Binary decision diagram (BDD)

Binary decision diagram (BDD), a data structure introduced by [Lee 1959], is a com-
pact representation of Boolean functions, Bn → B. It is a rooted, directed, acyclic
graph (DAG), that consists of 0 or more binary nonterminal vertices (i.e. vertices with
out-degree equal to 2 ) and some terminal vertices. Each nonterminal vertex v is asso-
ciated with a boolean variable (or w.r.t. some definitions, an index of a variable) and
has two child nodes: LOW(v) (a low child) and HIGH(v) (a high child). In the graph, the
relation v′ = LOW(v) (similarly v′ = HIGH(v)) is represented by a dotted (resp. solid)
arrow from v to v′. Each terminal vertex, v, is associated with a binary value. A path
from the root vertex to a 1-terminal (or a 0-terminal) represents a variable assignment
for which the represented Boolean function returns 1 (resp. 0).4 In a variable assign-
ment that corresponds to a path linking a vertex v to its high (or low) child, the value
assigned to the variable (associated with) v is 1 (resp. 0).

A BDD is in fact a graphical representation of Shannon’s decomposition rule indicat-
ing that Boolean functions can be reduced by means of the following identity:

f = xi · f |xi=1 + (1− xi) · f |xi=0 (3.14)

where f is a function, f |xi=b(x1, . . . , xn) := f (x1, . . . , xi−1, b, xi+1, . . . , xn) and xk, b ∈
B. Note that B = {0, 1} (representing {false, true}), · and + denote conjunction and

4If a path does not contain all variables occurred in the function, the variable assignment is partial.
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disjunction operations respectively and (1− xi) represents the negation of xi. Figure 3.1
illustrates a BDD that represents f = x1.x2 + x̄1.x2. As it can be seen, neither f nor its
corresponding BDD is simplified.

If different variables appear in the same order on all paths from the root (i.e. if
the order of a variable associated with a vertex is strictly less than the order of each
of its children) it is called an Ordered BDD (OBDD). Clearly the BDD of Figure 3.1 is
ordered.

x2 x2

x1

1 0

Figure 3.1: An (ordered) BDD representing f = x1.x2 + x̄1.x2

3.3.1.1 Reduced ordered binary decision diagram

An OBDD is reduced (called ROBDD) if the following reduction rules are applied to it:

1. S-deletion rule5 : If both outgoing edges of a nonterminal vertex v lead to the same
vertex w, v is deleted from the graph and the edges that lead to it are redirected
to w.

2. Merging rule: If there are vertices v and w with the same label (i.e. associated vari-
able) or the same value (in the case of terminal vertices) and the same 0-successor
and the same 1-successor (if any), one of those vertices (i.e. v) is deleted from the
graph and the edges that lead to it are redirected to the other vertex (i.e. w).

Figure 3.2 represents an ROBDD that corresponds to the graph of Figure 3.1. In
order to end in such a graph, the following actions are performed: In the first step, the
terminal vertices with same values are merged (by Merging rule). In the second step,
vertices with label x2 are merged (by merging rule). The resulting vertex is deleted in
the third step by S-deletion rule.

3.3.1.2 The canonicality of OBDDs

By applying reduction rules (repeatedly until neither of the rules are applicable), all
OBDDs that represent the same Boolean function produce the same reduced OBDD

5Abbreviation for Shannon deletion rule.
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x1

1 0

Figure 3.2: A reduced OBDD corresponding OBDD of Figure 3.1
.

[Bryant 1986]. In this sense, reduced OBDDs provide canonical representations of
Boolean functions. This is an important property of OBDDs; however, it should be
noted that the ROBDD size of a function depends on the chosen variable ordering
(see [Bryant 1986] for more discussion). The process of finding the optimal variable
ordering which leads to an ROBDD with minimum size is referred to as MinOBDD. It
is known that MinOBDD is NP-hard [Bollig and Wegener 1996].

3.3.2 Algebraic decision diagram (ADD)

ADDs generalize BDDs by allowing non-Boolean terminal vertices [Bahar et al. 1997].
For example, Figure 3.3 depicts an ADD with terminal values {0, 1, 2, 3}. Note that
nonterminal vertices are still Boolean, therefore Shannon decomposition rule still holds
for them. Since in contrast to ROBDDs, reduced ordered ADDs consist of more than
two terminal vertices, they are also known as multi-terminal BDDs (MTBDDs) [Clarke
et al. 1993]. A variation of ADDs that allow vertices to have more than two children
(corresponding multi-valued variables) is known as MDD [Srinivasan et al. 1990].

A major drawback of ADD data structure is that by increasing the number of ter-
minal nodes, the number of internal vertices rapidly increases (exponential in the
worst case). To address this issue, various algorithms have been proposed that try
to minimize the number of necessary terminal values by introducing edge-values. In
the rest of this subsection some of them are introduced.

3.3.3 Extended algebraic decision diagram (XADD)

In the context of probabilistic inference on piecewise smooth models over an n di-
mensional variable space, we require decision diagrams which have the following
properties:

• Nonterminal nodes should be Rn → B functions. Therefore, partition borders
would be representable by hyperplanes.

• Terminal nodes should be Rn → R functions (to represent the sub-functions that
are not necessarily constant).
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x2 x2

x1

3 2 1 0

Figure 3.3: An ADD for coding integers 0 to 3
.

These properties are possessed by the extended algebraic decision diagrams (XADDs)
(introduced by [Sanner et al. 2011]) since XADD nonterminal vertices are associated
with arbitrary first-order logic formulas rather than boolean variables. Moreover, the
values of the XADD terminal nodes are arbitrary first order logic terms. As an exam-
ple, a simple XADD is illustrated in Figure 3.4. It should be pointed out that unlike
most DDs, no algorithm is known by which XADDs can be converted to canonical
forms.

In the works offered by this thesis that are dealt with in the remaining chapters, the
only utilized data structures are XADDs with simplifying assumptions (i.e. working
with partial piecewise functions and assuming they are 0 whenever not defined, etc.).
Nonetheless, for the sake of completeness in Section 3.3.4 other decision diagrams
(namely, edge-valued decision diagrams) are briefly introduced. Although, up to our
knowledge, in the context of probabilistic reasoning, these structures are not utilized
so far, the possibility of their successful use can be a subject of future investigation.

3.3.4 Edge-valued decision diagrams

ADD (and BDD) diagrams provide efficient representations for functions whose struc-
tures are conjunctive/disjunctive in nature. However, the ADD-based (and BDD-
based) representation of some functions with additive/multiplicative structures is
quite large [Sanner and McAllester 2005]. Edge-valued (or affine) decision diagrams
provide compact representations for functions with arithmetic structure. Some such
functions (e.g. f = x0 + 2x1 + 4x2 + ...2nxn) can be represented exponentially more
compactly with Edge-valued ADDs (resp. Edge-valued BDDs).
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x>6 x<8

x<7

y+1 2 x-y 2x

Figure 3.4: A typical XADD diagram.

3.3.4.1 Edge-valued BDD (EVBDD)

EVBDD [Lai and Sastry 1992] provides some advantages over OBDDs. For example,
it can be derived from a higher level specification (e.g., ‘x + y’ as a specification of
an adder) instead of requiring a vector of boolean expressions. EVBDD preserves
both canonical and compactness properties from OBDDS. It is usually much more
compact than a OBDD when it is used to describe an arithmetic function. In this
data structure, each nonterminal vertex v is labeled by a variable x and a parameter
v called a (multiplicative) weight. It computes a function that is represented by the
2-tuple 〈v, x〉. As before, x is a boolean variable associated with a vertex. As will be
shown below, the weight v is in fact associated with the high outgoing edge of the
vertex (i.e. the outgoing edge that links v to its high child) and is added to a function
that is calculated by this node. The only terminal edge of a (reduced) EVBDD has
value 0 and is not associated with an additive weight. However, there is a link to the
root of the graph associated with a parameter c. The function that is represented by an
EVBDD is f := c + froot, where froot is the function calculated in the root of the graph.
The set of all variables that label internal vertices of the graph is the same as the set of
all free variables occurring in f . The function that corresponds to a vertex v associated
with variable xi and additive weight vi, is calculated by the following relation:6

fv = 〈vi, xi〉 = xi(vi + fHIGH(v)) + (1− xi) fLOW(v) (3.15)

where fHIGH(v) and fLOW(v) are functions calculated in the high child and low child of
v respectively.

Let us clarify these definitions and operations by an example. Figure 3.5 represents
the EVBDD that corresponds to function f = −2 + 5x2 + x2x3 + 3x1x2 + 4x1x2x3 −

6In some works, the multiplicative weights of EVBDD vertices affect both edges [Drechsler et al.
1996], [Drechsler and Sieling 2001].That is: fv := 〈vi , xi〉 := vi(xi · fHIGH(v) + (1− xi) fLOW(v)).



60 Piecewise Data Structures and Symbolic Operations

x2 x2

x1

x3 x3 x3 x3

0

v=4

v=
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1
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3

v=
0
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5

c=-2
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v vi

vii

viii

Figure 3.5: EVBDD representing f = −2+ 5x2 + x2x3 + 3x1x2 + 4x1x2x3− 2x1x3 + x3.

2x1x3 + x3 where x1, x2, x3 ∈ {0, 1}. Variables associated with vertices are shown as
labels inside the nodes and additive weights associated with each vertex is depicted
on the vertex’s high outgoing edge to emphasize that such weights are only added
to the functions calculated in the high child vertices (However, other variations exist
as well). Latin numbers are the indices of internal vertices (except (viii) which is the
index of the function of the graph i.e. f ). This process is shown in Table 3.1.

Table 3.1: Calculating the function represented by EVBDD of Figure 3.5.

Index Vertex Function Function formula
T T = 0 = value of the terminal node

i 〈4, x3〉 x3(4 + T) + (1− x3)T = 4x3
ii 〈2, x3〉 x3(2 + T) + (1− x3)T = 2x3
iii 〈−1, x3〉 x3(−1 + T) + (1− x3)T = −x3
iv 〈1, x3〉 x3(1 + T) + (1− x3)T = x3
v 〈3, x2〉 x2(3 + 〈4, x3〉) + (1− x2)〈2, x3〉
vi 〈0, x2〉 x2(0 + 〈−1, x3〉) + (1− x2)〈1, x3〉
vii 〈5, x1〉 x1(5 + 〈3, x2〉+ (1− x1)〈0, x2〉
viii f −2 + 〈5, x1〉
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3.3.4.2 Factored Edge-Valued BDD (FEVBDD)

In this data structure which is an extension to EVBDD, in addition to EVBDD’s ad-
ditive weight (associated with each high edge), a multiplicative weight is associated
with each edge (either high or low) [P. Tafertshofer 1997]. FEVBDDs can be used to
represent a wider range of functions concisely. As a result, the computational com-
plexity of certain operations can be reduced (compared to EVBDDs). Let v be a ver-
tex, x be its associated boolean variable, vadd (which corresponds to what was named
v in the case of EVBDDs) be the additive weight added to the result of the high child
of v, and wh and wl be the multiplicative weights associated with the high and low
outgoing edges of v respectively. The function calculated in v is:

fv = 〈v, x, wh, wl〉 = x(v + wh · fHIGH(v)) + (1− x) · wl · fLOW(v)

3.3.4.3 FDD, OFDD, BMD and *BMD

Decomposition of Boolean functions by (positive) Davio decomposition rule i.e.

f = f |xi=0 ⊕ xi( f |xi=0 ⊕ f |xi=1) (3.16)

rather than the Shannon’s decomposition rule (represented in equation (3.14)) results
in functional decision diagram (FDD) (and ordered functional decision diagram OFDD)
[Kebschull and Rosenstiel 1993; Drechsler and Sieling 2001] rather than BDD (resp.
OBDD) where ⊕ stands for modulo-2 sum (correspondent to Exclusive Or in propo-
sitional logic). For the decision diagrams in which each path contains all variables,
there is a close relation between BDD and FDD representations [Becker et al. 1995]
which is given by a boolean transformation called Muller Transform. In general, FDDs
and BDDs somehow compliment of each other in the sense that in the case of many
functions, FDD representation might be appropriate while BDD is not efficient and
vice versa. More specifically, for ordered FDDs, AND and OR operations may lead to
an exponential blow-up while for ordered BDDs, exponential explosion may happen
for XOR operations. Multi-terminal generalization of ordered FDD is known as binary
moment diagram (similar to the way ADD generalizes BDD) and multiplicative gener-
alization of BMD is known as *BMD (similar to the way EVBDD generalizes ADD)
[Bryant and Chen 1995] with a relation comparable to (3.15):

fv = 〈vi, xi〉 = vi( fLOW(v) + xi( fHIGH(v) − fLOW(v)) (3.17)

3.3.4.4 Hybrid decision diagrams: OKFDD, KBMD, K*BMD, *PHDD

Ordered Kronecker functional decision diagrams (OKFDDs) use more than one de-
composition rule in a single graph [Becker et al. 1997]. That is, among the three de-
composition rules, Shannon, positive Davio and negative Davio rule, dynamically, a
rule that leads to better compression of a subgraph is chosen. [Drechsler and Becker
1995] Kronecker Multiplicative BMD data structures (KBMDs) generalize BMDs by the
same idea i.e. by allowing different decomposition types per variable. K*BMD is a
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variation of KBMD that like FEVBDD uses a multiplicative weight as well [Drechsler
et al. 1996]. Multiplicative power hybrid decision diagram (*PHDD) is a version of K*BMD
where weights are interpreted as powers (of a given basis) [Chen and Bryant 1997].

3.3.4.5 Affine Algebraic Decision Diagrams

The affine ADD (AADD) is a data structure where each vertex function is represented
by a 5-tuple 〈x, ch, bh, cl , bl〉where as usual, x is the variable associated with the vertex
and ch and bh (similarly cl and bl) are additive and multiplicative weights of the high
(resp. low) outgoing edge of the vertex.

fv = 〈x, ch, bh, cl , bl〉 = x(ch + bh · fHIGH(v)) + (1− x)(cl + bl · fLOW(v))

Here, ch and cl are real values in the range [0, 1], bh and bl are real values in (0, 1] and
there are some restrictions on them such as: min(ch, cl) = 0, max(ch + bh, cl + bl) = 1,
etc. AADDs can represent additive and multiplicative structures in a compact form
and therefore, are suitable for probabilistic inference [Sanner and McAllester 2005].

3.4 Pruning piecewise functions and processing symbolic ex-
pressions

In Section 3.2 it was shown that a binary operation over an N-piece and an M-piece
functions results in an M× N-piece function. Nonetheless, in practice, the constraints
associated with many such pieces may be infeasible (that is, correspond to empty par-
titions) and therefore, can be pruned i.e. eliminated from the output structure. In our
implementation of piecewise case-statements, we have introduced a set of simple pat-
terns and rules that can detect some unsatisfiable combination of constraints. Over
time, we can add more rules to the code to be able to identify more such constraints.
The ultimate goal is to implement a robust automated system that addresses the con-
straint satisfiability problem of first order logic sentences. Such tasks are typically
performed by automated theorem proving (ATP) systems as well as frameworks referred
as satisfiability modulo theories (SMTs). These systems can be regarded as generaliza-
tions of Boolean SAT problem (in the propositional calculus) to (decidable subsets of)
first order logic that (particularly in the case of SMTs) are interpreted in the context
of specific theories (in our case, the theory of real arithmetic). Otherwise stated, to
detect infeasible partitions, we are interested in solving symbolic inequalities i.e. in-
equalities involving uninterpreted terms. These inequalities over real variables are
evaluated with respect to the theory of real arithmetic.

Apart from solving inequalities, in Chapter 6 (and to a lesser extent in Chapter 5)
we are interested in factorization of (multivariate) polynomials and symbolic integra-
tion of fractional functions. We will impose some restriction on the models to be able
to carry out these tasks symbolically by relying on a small set of solution formulas. In
the future we may enrich this set of formulas. This will enable us to handle larger sets
of probabilistic models. Automated factorization and integration are tasks which are
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typically accomplished by computer algebra systems (CASs). As a matter of fact, we
can claim that in order to carry out the inference tasks that will be introduced in the
next chapters, we have already implemented a simple CAS/ATP/SMT software.

In case the readers find the contributions offered in this thesis applicable to the
domains that they are interested in but they require to handle a larger set of models,
they may need to consider the abilities of the existing full-fledged CAS and ATP/SMT
systems with an eye to the possibility of combining them with our algorithms. To
address such a potential requirement, in this subsection we will introduce the basic
principles and functionalities of the existing such systems.

Since both Computer algebra systems (such as MAPLE) and computer theorem
provers (like Vampire) are computer systems with the formal ability of symbolic ma-
nipulation, they may superficially look similar, however, in practice there is surpris-
ingly little common ground between them, either by the way they internally work or
by the communities of their users and creators [Harrison 1996]. Computer algebra
systems are used mostly by applied mathematicians, scientists and engineers. These
systems work quickly, (due to imposing some intuitive assumptions that in rare cases
do not hold but in general lead to efficient solutions) occasionally make mistakes and
mainly perform algebraic and continuous mathematics such as differentiation and in-
tegrals. In contrast, theorem provers are mainly used by computer scientists interested
in system verification or by logicians experimenting with new logics. These latter sys-
tems, perform logical reasoning by means of proof procedures for particular domains
such as natural numbers. They are typically biased towards discrete mathematics, are
meant to be reliable and are comparatively more difficult to use [Harrison 1996].

3.4.1 Computer Algebra Systems (CASs)

CASs such as Axiom, Derive, Macsyma, Maple, Mathematica, MuPAD, Reduce, Sym-
bolicC++, FORM, Fermat, GAP, Magma, Mathomatic, Maxima, PARI/GP, OpenAx-
iom, Symbolism, SymPy, Xcas and Sage are software programs that perform manipu-
lation of mathematical expressions in symbolic form.

Expressions. Typical expressions which are manipulated by CASs include: polynomi-
als, logarithmic, exponential and trigonometric functions, arbitrary function symbols
and constants, derivatives, integrals, sums, products, matrices and numerical values.

Manipulations. Typical manipulations include: simplification of expressions to smaller
(or standard forms); expansion of expressions; symbolic/numeric substitution of sym-
bols; factorization; closed form differentiation/(indefinite) integration; solutions for
(non)linear equations; taking limits, matrix operations, etc.

Some underlying mathematical/symbolic techniques of CASs.

• Rule-based operations: Closed-form (in)definite integrals, derivatives, limits, op-
erations of mathematical series, etc. of many types of expressions (such as some
(inverse) trigonometric, (inverse) hyperbolic, exponential, logarithmic and Gaus-
sian and other special functions) are known, hence maintained/applied by means
of a look-up table [Brychkov 2008].
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• Heuristics algorithms: In the absence of a general symbolic solution for definite
integrals of some functions related to Laplace/Fourier transforms, CAS devel-
opers have implemented heuristics based on pattern matching, differentiation,
variable transformation, and occasionally, the use of limits by starting from some
special functions (including beta and (incomplete) gamma functions) [Geddes
et al. 1990]. Although this approach is heuristic rather than algorithmic, it is an
effective method for solving many definite integrals encountered by practical
engineering applications. This method was pioneered by developers of Maple
system and later on, emulated by Mathematica, Axiom and other systems.

• Risch algorithm: This algorithm determines if an indefinite integral of an elemen-
tary function (i.e a function built from a finite number of exponentials, loga-
rithms, constants, and roots through composition and combinations using the
four elementary operations) is elementary and in case it is, integrates it [Daven-
port 1981]. The generalized Risch algorithm is implemented by Manuel Bron-
stein in Axiom CAS [Bronstein 1990].

• Cantor–Zassenhaus algorithm: is arguably the dominant algorithm for solving the
problem of factorising polynomials over finite fields. The algorithm consists
mainly of exponentiation and polynomial greatest common divisor (GCD) com-
putations. [Cantor and Zassenhaus 1981]

• Gaussian elimination: is an algorithm for solving systems of linear equations by
means of a sequence of operations performed on their associated matrix of co-
efficients. This method is also used to find the rank of a matrix, to calculate
the determinant of a matrix, and to calculate the inverse of an invertible square
matrix. [Grcar 2011]

Algebraic geometry. Algorithmic geometry [Cox et al. 1998] and in particular, algo-
rithms providing solutions for systems of multivariate polynomial equations as well
as finding polynomial greatest common divisor (or more generally, polynomial factoriza-
tion) are quite relevant to the scope of the proposed thesis and in particular can be
used for the simplification of expressions required in an inference algorithm called
symbolic Gibbs sampling that will be introduced in Chapter 5.

3.4.2 Automated theorem-proving

Automated theorem proving (ATP) (or automatic deduction) is a subfield of auto-
mated reasoning (along with interactive theorem proving, automated proof checking,
analogy induction and abduction) dealing with proving mathematical theorems by
computer programs. First-order theorem proving is one of the most mature subfields
of automated theorem proving. Some famous first-order ATP systems are: E [Schulz
2002], SETHEO [Letz et al. 1992], Vampire [Riazanov and Voronkov 2002] and SPASS
[Weidenbach et al. 2009].

Proof theories. There exist many calculi of formal proofs including Hilbert-style cal-
culi, Natural deduction systems such as Nm, Ni, Nc and Gentzen systems such as



§3.4 Pruning piecewise functions and processing symbolic expressions 65

G1, G2, G3, one sided Gentzen systems GS1, GS2, GS3 and their variations [Troelstra
and Schwichtenberg 2000]. Each branch of proof calculi differ in some axioms. Many
proof procedures of Genzen systems are based on a rule called cut. It is defined as

Γ ⇒ ∆, A A, Γ ′ ⇒ ∆′

Γ , Γ ′ ⇒ ∆, ∆′
,

where a typical expression A, B ⇒ C, D is a sequent and should be read as: “The con-
junction of (formulas in) A and B proves the disjunction of (formulas in) C and D”.
Cut is not an axiom for any Gentzen system, since Gentzens cut elimination theorem
states, “if a sequent is provable using cut rule, it has a cut-free proof as well”. How-
ever, cut-free proofs are typically very long and in this sense, cut is a powerful tool.

Resolution. An instance of cut rule, called (linear) resolution rule [Robinson 1965; Troel-
stra and Schwichtenberg 2000] is as follows:

Γ ⇒ A A, Γ ′ ⇒
Γ , Γ ′ ⇒

If Γ = {¬a1, . . .¬an}, Γ ′ = {¬b1, . . .¬bm} and A = {c}, the resolution rule (for propo-
sitional logic) leads to:

a1 ∨ . . . ∨ an ∨ c b1 ∨ . . . ∨ bm ∨ ¬c
a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm

Resolution method for propositional logic. Using the resolution rule, a sound and
complete algorithm for deciding the satisfiability of a propositional formula can be
constructed: If there exists a directed acyclic graph (DAG) with vertices labeled by
propositions in conjunctive normal form (CNF) where each sibling pair of vertices are
labeled by clauses in form A ∨ X and B ∨ ¬X, and a corresponding parent vertex
labeled A ∨ B such that the root of the DAG is labeled with the empty clause, the
knowledge base (KB) corresponding to the leaves of the tree is unsatisfiable, otherwise
it is satisfiable.

Resolution method for first-order logic. In order to perform resolution on a first-
order knowledge base, the sentences should be converted to Prenex normal form (i.e.
in each sentence, all quantifiers should be pushed to the left side, leaving the right
part quantifier free) removing existential quantifiers by Skolemization [Boolos et al.
2002], removing universal quantifiers (since free variables are understood as being
universally quantified) and performing resolution on a pair of clauses containing the
same predicate (negated in only one clause) after performing an appropriate process
known as unification [Gallier 1985]. The goal of unification is to find a substitution
demonstrating that two seemingly different terms are in fact either identical or just
equal. Three important types of FOL unification processes are discussed next:

• (Syntactic) unification. The simplest and most widely used kind of unification
does not need any assumption on the interpretation of symbolic expressions.



66 Piecewise Data Structures and Symbolic Operations

For example the formulas f (x, a) and f (b, y) are unified under the substitution
{x 7→ b, y 7→ a}.

• Associative-commutative unification (AC-Unification) Since functions which
are associative and commutative (such as the arithmetic addition and multipli-
cation functions) are often the subject of automated theorem proving, [Stickel
1981] presents an algorithm which unifies terms whose corresponding functions
have these properties. For example by AC-Unification, expressions z× (x× x)+
y and y + (w× x)× x can be unified by the substitution {w 7→ z}.

• Equational-unification (E-Unification) E-unification is concerned with solving
term equations modulo an equational theory E. Syntactic unification can be
seen as a special kind of E-Unification where E = ∅. Similary, AC-Unification
is a special kind of E-Unification where E = { f (x, y) = f (y, x), f (x, f (y, z)) =
f ( f (x, y), z)} [Baader 1992]. As another example, if besides associativity and
commutativity of × and + functions, E includes distributivity of × over +, by
E-Unification, expressions x× (y + z) and x× z + w× x can be unified by sub-
stitution {y 7→ w}.

3.4.3 Satisfiability Modulo Theories (SMT)

SMT addresses the problem of constraint satisfaction for decidable subsets of first
order logic (just as SAT is the problem of constraint satisfaction in propositional cal-
culus). The aim of Satisfiability Modulo Theories (SMT) is to check satisfiability of
a (set of) quantifier-free formula(s) F with respect to one or more theories.7 SMT is
based on a practical viewpoint towards the satisfiability of first-order logic. That is,
SMT solvers concentrate on specific classes of background theories and try to address
the problem of satisfiability w.r.t. those theories (using domain specific decision pro-
cedures [Manna and Zarba 2003]), rather than dealing with the problem in a general
and theoretic sense.

A (quantifier-free) first order formula is a logical combination of atomic sentences
analogous to the combination of propositional variables in a proposition. The differ-
ence is that while propositional variables take value independently from each other, in
general, atomic sentences do not; for example both atomic sentences x > 0 and x < 0
cannot be true in one interpretation. The task of determining whether a conjunction
of atomic sentences (also known as constraints or theory literals) is satisfiable or not
is performed by a process known as theory solving. Therefore, a typical SMT solver is
a combination of a SAT technique and some theory solvers (T-solvers) [de Moura and
Bjrner 2009].

Let us clarify these concepts by an example: Consider the satisfiability problem of

7In the literature of SMT, theory is often defined as a set of sentences (e.g. see [de Moura and Bjrner
2009]). However, it should be mentioned that by a more formal definition, theory is a set of sentences
that includes all consequences of itself [Boolos et al. 2002].
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the following sentenceφ:

φ ≡ (y− x ≥ 0) ∧ (z− y ≥ 0) ∧ ((x− z ≥ 2) ∨ (x− z ≥ 4))

From left to right, let associate atomic sentences with propositions a to d. The follow-
ing propositions R1 to R4 are due to the transitivity property of ≥:

R1 ≡ ¬(a∧ b∧ c) R2 ≡ ¬(a∧ b∧ d) R3 ≡ ¬(¬a∧¬b∧¬c) R4 ≡ ¬(¬a∧¬b∧¬d)

In this example, satisfiability of R1 to R4 has to be determined by a theory solver (T-
solver). On the other hand, the structure ofφ is encoded by the following proposition
P:

P ≡ a ∧ b ∧ (c ∨ d)

and the task of determining the satisfiability of conjunction of R1 to R4 and P is dele-
gated to a SAT-solver.

With respect to the way SAT and theory solvers are combined, [Sheini and Sakallah
2006] divides SMT solvers into three main categories:

1. Eager approaches: In these approaches, in a single step, the original first-order
formulas are translated to pure propositional formulas which have solutions
isomorphic to the solutions of the original problem (see e.g. UCLID [Lahiri and
Seshia 2004]). Therefore, these approaches directly convert SMT problems to
SAT problems. In the case of the above example, this means directly feeding
¬(a∧ b∧ c)∧¬(a∧ b∧ d)∧¬(¬a∧¬b∧¬c)∧¬(¬a∧¬b∧¬d)∧ (a∧ b∧ (c∨ d))
to a SAT solver. In general, finding such a translation might be hard and may
lead to an explosion of boolean variables.

2. Off-line lazy approaches: The proposition that represents the structure of the orig-
inal sentence (e.g. P in the former example) is fed to a SAT solver reporting the
set of (proposition) truth assignments under which it is satisfiable (e.g. {a ∧ b ∧
c ∧ ¬d, a ∧ b ∧ c ∧ d, a ∧ b ∧ ¬c ∧ d} in the former example). Obviously, if such
a set is empty, regardless of the semantics of the atomic sentences, the original
formula is unsatisfiable. If not, the conjunction of atomic sentences that corre-
sponds to each truth assignment (i.e. the conjunction of true theory literals) are
fed to a T-solver. If at least one such conjunction is satisfiable then the original
formula is satisfiable, otherwise it is not.

3. Online solving approaches: These methods are very similar to off-line approaches
with the difference that the SAT and theory solvers are tightly combined such
that the consistency of theory literals are checked incrementally as soon as they
are returned by the SAT solver For instance in the previous example, as soon as
SAT solver generates ¬(a ∧ b ∧ c ∧ d), its validity is checked by the T-solver and
in case it is valid, SAT solver does not need to generate the other possible truth
assignments.

SAT solvers used in SMT solvers are typically based on the DPLL backtrack search
algorithm [Davis et al. 1962]. The variety of theory solvers is much more and a typical
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SMT solver combines more than one theory solver. Some classes of theories integrated
in modern SMT solvers are as follows:

Difference arithmetic theories (DA). Expressions in which the only allowed form of
predicates is: x− y ≤ c, where x and y are variables (or constants) and c is a numeral
(constant).8

Such a problem can easily be solved by Bellman-Ford graph negative-weight cycle
detection algorithms, a survey of which is given in [Cherkassky and Goldberg 1996].

Linear (additive) arithmetic theories (LA). Expressions (i.e. theories) involving re-
lations <, ≤, + and function symbols + , − and × where only multiplication with
numerals is allowed. Solving these kinds of expressions is also relatively easy (see
e.g. [Dutertre and Moura 2006]).

Equality (free functions). If a theory only consists of (un)equality of some terms, its
satisfiability can be decided by a simple process called congruence closure [Bachmair
et al. 2003]. This algorithm basically constitutes congruence classes for equal terms
and then iteratively, adds more complicated structures (which are made of congruent
pairwise elements) to new congruent classes.

3.5 Summary

This chapter contained the prerequisite materials related to piecewise continuous al-
gebra that are required in the next Chapters or may be useful in their potential future
extensions.

The formal definition of piecewise functions as well as the relevant notations that
are used throughout were presented in Section 3.1. Section 3.2 dealt with the piece-
wise operations as well as their complexity and worst-case increment in the number of
resulting partitions. These operations include addition, multiplication and integration
as well as min/max that are typical operations required for probabilistic inference.

In Section 3.3, various decision diagrams, i.e. data structures suitable for compact
representation of piecewise functions, were introduced. Among them, extended alge-
braic decision diagram (XADD) is suitable for representation of piecewise continuous
(or piecewise discrete/continuous hybrid) functions (see Section 3.3.3) and therefore,
is the only data structure used throughout. Nonetheless, edge-valued decision diagrams
(see Section 3.3.4) are capable of representing additive and multiplicative structures
in a compact manner and can potentially be utilized in future works.

We showed that binary operations on piecewise structures can lead to exponen-
tial blow up in the number of partitions. To prevent this behavior, a key insight is
that in many cases the resulting partitions are empty (i.e. correspond to infeasible
constraints). To detect and omit such partitions, automated theorem proving (ATP) and
satisfiability modulo theory (SMT) tools can be used. These techniques and tools were

8Evidently, equality constraints x = y can be captured by x − y ≤ 0 ∧ y − x ≤ 0. For x, y, z ∈ Z,
strict inequalities (such as x− y < c) are expressible as: x− y ≤ c− 1, and the negation of x− y ≤ c is
y− x ≤ −c− 1.
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briefly introduced in Section 3.4. While our current implementation uses simple SMT
rules, in order to increase its performance, in future we may combine it with full-
fledged ATP and SMT systems.

Familiarized with probabilistic inference in Chapter 2 and reinforced with the
piecewise algebra in the current chapter, we are now ready to proceed to the next
chapters where the actual contributions are presented.
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Chapter 4

Gibbs Sampling from augmented
piecewise models

In Section 3.2, it was stated that in general, exact closed-form inference on highly
piecewise graphical models is intractable. Due to being asymptotically unbiased,
Markov Chain Monte Carlo methods provide the second best option. Nonetheless,
as argued in section 2.3.2, in terms of the rate of convergence to the target distribu-
tion, the performance of most MCMC methods on piecewise models is typically low.
For instance, respectively in Sections 2.3.2.6 and 2.3.2.8 we stated that Metropolis-
Hastings (MH) and Hamiltonian Monte Carlo (HMC) algorithms are designed based
on the assumption of smoothness of the target distribution — an assumption that in
the case of piecewise functions, does not hold near the partitioning borders.

Luckily, Gibbs sampling does not suffer from this problem (see Section 2.3.2.7)
and can be successfully applied to piecewise densities. Nonetheless, if the number of
model partitions in relatively large, this sampler becomes slow since in this case, in
each step of Gibbs sampling many (univariate) integrations are required.

The later problem typically occurs in case a Graphical model consists of several
piecewise factors since the number of partitions in the joint distribution can grow
exponentially in the number of such factors (see Section 3.2.2). This is exactly the
problem tackled in this chapter:

We propose a Gibbs sampling mechanism that takes samples from a Graphical model with
piecewise factors in linear (rather than exponential) time.

More specifically, we propose a mechanism to transform piecewise models into
equivalent mixture models and then apply blocked Gibbs sampling to the transformed
models and achieve an exponential-to-linear reduction in space and time compared to
a conventional Gibbs sampler. This enables fast, asymptotically unbiased Bayesian
inference in an expressive class of piecewise graphical models. As our empirical re-
sults will show, particularly in models where the number of partitions in the joint
distribution grows rapidly in the number of piecewise factors, our proposed sampler
requires orders of magnitude less time than Metropolis-Hastings and conventional
Gibbs sampling methods to achieve the same level of accuracy.

71
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θ
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Figure 4.1: Graphical model for BPPL problem described in Section 4.1.

Without loss of generality and for notational convenience, throughout this chap-
ter our focus is on Bayesian inference problems (introduced in Section 2.2.1.1) where
the likelihood functions are piecewise. An instance of this problem is presented in
Section 1.1.4 where Figure 1.4 clearly shows that in such problems, the number of
posterior partitions often grows exponentially in the number of observed data points.

To motivate the discussion, in Sections 4.1 and 4.2 we formalize two case studies
where the likelihood functions are naturally piecewise. These models are revisited in
the latter part of this chapter where the performance of MCMC samplers in empiri-
cally compared.

The complexity of Bayesian inference in piecewise models is studied formally in
Section 4.3. The novel inference algorithm (referred to as augmented Gibbs sampling
throughout) as well as the proof of its correctness are presented in Section 4.4. The
experimental results are dealt with in Section 4.5. These outcomes indicate the in
many models, the proposed algorithm remarkably outperforms the baseline Gibbs
and Metropolis-Hastings sampling methods.

4.1 Case study I: Bayesian Pairwise Preference Learning (BPPL)

In order to provide a concrete example for a Bayesian inference model where the like-
lihood functions are piecewise, we begin with a case study, namely, Bayesian pairwise
preference learning (BPPL).

Preference learning deals with the problem of Bayesian utility learning given an
agent’s preferences. In this setting, the objective is to infer a posterior distribution over
an agent’s utility function based on previously observed preferences. These posterior
utility functions can then be used in a variety of applications such as predicting the
future agent’s decisions, etc.

As it will be formalized shortly, BPPL is a Bayesian approach to preference learn-
ing where the objective is to learn a user’s weighting of attributes (such as color, size,
price, etc.) for classes of items (e.g., cars, apartment rentals, movies) given their re-
sponses to pairwise comparison queries over those items.
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Bayesian pairwise preference learning (BPPL). Let each item a be modeled by a D-
dimensional real-valued attribute choice vector:

a := (α1, . . . ,αD)

The goal is to learn an attribute weight vector θ = (θ1, . . . ,θD) ∈ RD that describes
the utility of each attribute choice from user responses to preference queries. As com-
monly done in multi-attribute utility theory [Keeney and Raiffa 1993], the overall item
utility u(a|θ) is decomposed additively over the attribute choices of a:

u(a|θ) =
D

∑
i=1
θi ·αi (4.1)

User responses are in the form of n queries (i.e. observed data points) d1 to dn where
for each 1 ≤ j ≤ n, d j is a pairwise comparison of some items a j and b j with the
following possible responses:

• a j � b j: In the j-th query, the user prefers item a j over b j.

• a j � b j: In the j-th query, the user does not prefer item a j over b j.

It is assumed that with an elicitation noise 0 ≤ η < 0.5, the item with a greater utility
is preferred:

p(a j � b j |θ) =


η if u(a j|θ) < u(b j|θ)
0.5 if u(a j|θ) = u(b j|θ)
1− η if u(a j|θ) > u(b j|θ)

(4.2)

Clearly, since a j is either preferred to b j or not:

p(a j � b j |θ) = 1− p(a j � b j |θ) (4.3)

The corresponding graphical model is illustrated in Figure 4.1 and indicates that our
posterior belief over the user’s attribute weights is provided by the standard Bayesian
inference expression:

p(θ| d1, . . . , dn) ∝ pr(θ, d1, . . . , dn) = pr(θ) ·
n

∏
j=1

p(d j|θ) (4.4)

A simple instance of the provided BPPL setting is provided in Figure 4.2. It is
assumed that items are associated with a couple of real-valued attributes (e.g. item
weight and price),

a = (α1,α2)

The utility weightθi of each attributeαi is unknown in advance therefore as Figure 4.2-
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Figure 4.2: A two dimensional instance of BPPL model: (i) An (unnormalized) prior
uniform in a rectangle with center (0,0). (ii) Likelihood model p(a1 � b1|θ) and (iii)
p(a2 � b2|θ) (as in Eq. 4.2) where a1 = (5, 3), b1 = (6, 2), a2 = a1 and b2 = (6, 3).
(iv) A piecewise function proportional to the posterior distribution.

i shows, a uniform distribution centered at 0 is assigned to each,

θi ∼ U(−c, c) for i = 1, 2

The value of parameter c is not important since the only thing that matters is the
relative weight of the attributes.

Suppose it is observed that the agent prefers item a1 = (5, 3) over b1 = (6, 2). By
definitions 4.1 and 4.2, the likelihood of such an event is,

p(a1 � b1 |θ) =


η if 5.0 ·θ1 + 3.0 ·θ2 < 6.0 ·θ1 + 2.0 ·θ2

0.5 if 5.0 ·θ1 + 3.0 ·θ2 = 6.0 ·θ1 + 2.0 ·θ2

1− η if 5.0 ·θ1 + 3.0 ·θ2 > 6.0 ·θ1 + 2.0 ·θ2

which is depicted in Figure 4.2-ii. Note that the second case-statement can be dis-
carded since it is associated with the constraint,

θ1 = θ2

which corresponds to a 0-volume partition value of which does not affect the cumula-
tive density function. Therefore for simplicity, we drop it and represent the aforemen-
tioned likelihood by a partial function that after simplification is as follows,

p(a1 � b1 |θ) =
{
η if θ2 < θ1

1− η if θ2 > θ1
(4.5)

Also suppose that we observe that the agent also prefers item a2 = (5, 3) over b2 =
(6, 3). Note that different indices can refer to a same item as here,

a1 = a2

Again, by definitions 4.1 and 4.2 and discarding the 0-probable partition θ1 = 0, the
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θ1

dt

θ2 θD

θt
~τt

at
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t=1:n

(a)
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Figure 4.3: Bayesian Market Making problem (MM) presented in the case study II
(Section 4.2). (a) Prior distribution of two instrument types (therefore, a 2D space). (b)
Corresponding posterior given 4 observed data points (trader responses).

following likelihood is derived (see Figure 4.2-iii),

p(a2 � b2 |θ) =
{
η if θ1 > 0

1− η if θ1 < 0
(4.6)

With respect to the Bayesian network topology of this model defined by formula 4.4
and by relations 4.5 and 4.6, the posterior distribution of the weight vector (a.k.a.
parameter vector) is as follows,

p
(
θ | (a1 � b1), (a2 � b2)

)
∝ p(θ) · p(a1 � b1 |θ) · p(a2 � b2 |θ)

=

{
1 if − c < θ1 < c,−c < θ2 < c
0 otherwise

⊗
{
η if θ2 < θ1

1− η if θ1 < θ2
⊗
{
η if 0 < θ1

1− η if θ1 < 0

=



η2 if − c < θ2 < θ1 < c, 0 < θ1

η(1− η) if − c < θ2 < θ1 < c, θ1 < 0

η(1− η) if − c < θ1 < θ2 < c, 0 < θ1

(1− η)2 if − c < θ1 < θ2 < c, θ1 < 0

0 otherwise

which is depicted in Figure 4.2-iv.

4.2 Case study II: Bayesian Market Making (MM)

The second case study deals with the problem of Bayesian trade valuation modeling
and Market making (MM) which is motivated by [Das and Magdon-Ismail 2008]:

Market making (MM). Suppose there are D different types of instruments with respec-
tive valuations θ = (θ1, . . . ,θD). There is a market maker who at each time step t deals
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an instrument of type τt ∈ {1, . . . , D} by setting bid and ask bt and at denoting prices
at which she is willing to buy and sell each unit respectively (where bt ≤ at). The
“true” valuation of different types are unknown (to her) but any a priori knowledge
over their dependencies that can be expressed via a DAG structure over their associ-
ated random variables is permitted. Nonetheless, without loss of generality we only
consider the following simple dependency: Assume the types indicate different ver-
sions of the same product and each new version is more expensive than the older ones
(θi ≤ θi+1). The valuation of the oldest version is within some given price range [L, H]
and the price difference of any consecutive versions is bound by a known parameter
δ:

p(θ1) = U (L, H)

p(θi+1) = U (θi,θi + δ) ∀i ∈ {1, . . . , D− 1}

where U (·, ·) denotes uniform distributions. At each time-step t, a trader arrives. He
has a noisy estimation θ̃t of the actual value of the presented instrument τt. We assume
p(θ̃t|θ, τt = i) = U (θi −ε,θi +ε). The trader response to bid and ask prices at and
bt is dt in {BUY, SELL, HOLD}. If he thinks the instrument is undervalued by the ask
price (or overvalued by the bid price), with probability 0.8, he buys it (resp. sells it),
otherwise holds.

p(BUY | θ̃t, at, bt) =

{
0 if θ̃t < at

0.8 if θ̃t ≥ at

p(SELL | θ̃t, at, bt) =

{
0.8 if θ̃t ≤ bt

0 if θ̃t > bt

p(HOLD | θ̃t, at, bt) =

{
1 if bt < θ̃t < at

0.2 if θ̃t ≤ bt ∨ θ̃t ≥ at

Based on traders’ responses, the market maker intends to compute the posterior dis-
tribution of the valuations of all instrument types. To transform this problem (with
corresponding model shown in Figure 4.3a) to the model represented by Equation 4.4,
the variables θ̃t should be marginalized. For instance:

p(BUY |θ, at, bt, τt) =
∫ ∞
−∞ p(BUY | θ̃t, at, bt) · p(θ̃t |θ, τt) dθ̃t

=
∫ ∞
−∞
{

0 if θ̃t < at

0.8 if θ̃t ≥ at
⊗
{

1
2ε if θτt−ε ≤ θ̃t ≤ θτt+ε

0 if θ̃t <θτt−ε ∨ θ̃t >θτt+ε
dθ̃t

=


0 if θτt ≤ at −ε
0.4(1+θτt−at

ε ) if at−ε < θτt ≤ at+ε

0.8 if θτt > at +ε
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The presented case studies illustrated that due to applications of piecewise likeli-
hood functions in the context of Bayesian inference, scalable inference on piecewise
models is in demand. This problem is addressed in the subsequent sections.

4.3 Complexity of Inference on Piecewise Models.

The cases studies presented in Sections 4.1 and 4.2 are examples of a more general
framework where Bayesian inference is carried out on a model with piecewise likeli-
hood functions. We have already mentioned that this can lead to an exponential blow
up in the number of pieces in the posterior. In this short section, the complexity of
inference on such piecewise models is studied more formally.

Once again it should be pointed out that the inference method that will be pre-
sented in Section 4.4 can be generalized to arbitrary graphical models with piecewise
factor in a straight forward manner. However, our focus in this work is on Bayesian
networks factorized as in equation 4.4, that is the following standard form:

p(θ| d1, . . . , dn) ∝ p(θ, d1, . . . , dn) = p(θ) ·
n

∏
j=1

p(d j|θ) (4.7)

whereθ := (θ1, . . . ,θD) is a parameter vector and d j are observed data points that are
independent conditioned on the parameter vector (see Section 2.2.1.1).

If in the model described by Equation 4.7, the prior p(θ) is an L-piece distribu-
tion and each of the n likelihoods is a piecewise function with number of partitions
bounded by M, then the joint distribution is a piecewise function with number of par-
titions bounded by LMn (therefore, O(Mn)) since as discussed in the previous chapter,
the number of partitions in the product of two piecewise functions is bounded by the
product of the number of their partitions. Figure 4.2 represents an example where
the number of pieces in the posterior actually grows exponentially in the number of
observations.

Clearly, Gibbs sampling in such complicated models is not scalable in the amount
of data (i.e. observations) and may become rapidly intractable. Before explaining the
proposed solution, it should be pointed out that in the implementation of the code
which is utilized in the present chapter it is assumed that the piecewise structures are
linear/quadratic piecewise polynomials. That is, their associated constraints are restricted
to linear or quadratic inequalities while sub-functions are polynomials with real ex-
ponents. However, in theory, the algorithm can be applied to any family of piecewise
models in which the roots of univariate constraint expressions can be found and sub-
functions (and their products) are integrable.

4.4 Piecewise Models as Mixture Models

In this section we detail how to overcome the exponential complexity of standard
Gibbs sampling by transforming piecewise models to (augmented) mixture models
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(b)
Figure 4.4: (a) Plate notation corresponding a Bayesian inference model with param-
eter (vector) θ and data points d1 to dn where the likelihood model is piecewise and
defined by equation 4.9. (b) An equivalent mixture model with augmented variable k
where p(k |θ) and p(d| k,θ) are defined by equation 4.10.

and performing linear time Gibbs sampling in the latter models. While augmented
models to facilitate Gibbs sampling have been proposed previously, e.g., Swendsen-
Wang (SW) sampling [Swendsen and Wang 1987] and more recently FlyMC sam-
pling [Maclaurin and Adams 2014], methods like SW are specific to restricted Ising
models and FlyMC requires careful problem-specific proposal design and tuning.
In this section, we present a generic augmented model for an expressive class of
piecewise models and an analytical Gibbs sampler that does not require problem-
specific proposal design. Furthermore, our augmented Gibbs proposal achieves a novel
exponential-to-linear reduction in the complexity of sampling from a Bayesian posterior
with an exponential number of pieces.

We motivate the algorithm by first introducing the augmented posterior for piece-
wise likelihoods:

p(θ| d1, . . . , dn) ∝ p(θ) ⊗
k1 = 1. f 1

1 (θ) ifφ1
1(θ)

...

k1 = M. f 1
M(θ) ifφ1

M(θ)

⊗ · · · ⊗


kn = 1. f n

1 (θ) ifφn
1(θ)

...

kn = M. f n
M(θ) ifφn

M(θ)

In the above, k j is the partition-counter of the j-th likelihood function. φ j
v is its v-th

constraint and f j
v is its associated sub-function. Also for readability, case statements

are numbered and without loss of generality, we assume the number of partitions in
each likelihood function is M.

We observe that each k j can be seen as a random variable. It deterministically takes
the value of the partition whose associated constraint holds (givenθ) and its possible
outcomes are in

VAL(k j) = {1, . . . , M}

Note that for any givenθ, exactly one constraint holds for a piecewise function. There-
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fore,
M

∑
k j=1

p(k j |θ) = 1

Intuitively, it can be assumed that k j is the underlying variable that determines which
partition of each likelihood function is ‘chosen’. As we have:

p(d j|θ) =
M

∑
k j=1

p(k j|θ)p(d j| k j,θ) (4.8)

we can claim that a piecewise likelihood function is a mixture model in which sub-
functions f j

v are the mixture components and k j provide binary mixture weights. Hence:

p(θ| d1, . . . , dn) ∝ p(θ)⊗∑
k1

p(k1|θ)p(d1| k1,θ)

⊗ · · · ⊗∑
kn

p(kn|θ)p(dn| kn,θ)

∝∑
k1

. . . ∑
kn

p(θ, d1, . . . , dn, k1, . . . , kn)

This means that the Bayesian networks in Figures 4.4a and 4.4b are equivalent. There-
fore, instead of taking samples from 4.4a, they can be taken from the augmented model
4.4b. A key observation, however, is that unlike the conditional distributions p(θi|θ−i),
in p(θi|θ−i, k1, . . . , kn) the number of partitions is constant rather than growing as Mn.

The reason is that if k = (k1, . . . , kn) are given, for the j-th likelihood a single
sub-function f j

k j
is ‘chosen’ and

p(θi|θ−i, k1, . . . , kn) ∝ p(θi|θ−i)
n

∏
j=1

f j
k j
(θ)

Since the sub-functions are not piecewise themselves, the number of partitions in
p(θi|θ−i, k1, . . . , kn) is bounded by the number of partitions in the prior.

In the following proposition, we prove Equation 4.8 is valid:

Proposition 3. The following likelihood function:

p(d|θ) :=


f1(θ) ifφ1(θ)
...
fM(θ) ifφM(θ)

(4.9)

is equivalent to
M

∑
k=1

p(k|θ) · p(d| k,θ)
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Figure 4.5: A piecewise joint distribution of (θ1,θ2) partitioned by bi-valued linear
constraints. In the side, specified by each arrow, its associated auxiliary variable k j is

1 otherwise 2. A Gibbs sampler started from an initial point O = (θ
(0)
1 ,θ(0)2 ), is trapped

in an initial partition (A) where k1 = k2 = k3 = 2 and k4 = 1.

where:

p(k |θ) :=

{
1 ifφk(θ)

0 if ¬φk(θ)
p(d| k,θ) := fk(θ) (4.10)

Proof. Since constraintsφk are mutually exclusive and jointly exhaustive:1

M

∑
k=1

p(k |θ) =
M

∑
k=1

{
1 ifφk(θ)

0 if ¬φk(θ)
= 1

Therefore p(k|θ) is a proper probability function. On the other hand, by marginaliz-
ing k, (4.10) trivially lead to (4.9):

∑
k

p(k|θ) · p(d| k,θ) =
M

∑
k=1

{
1 ifφk(θ)

0 if ¬φk(θ)
· fk(θ), by (4.10)

=
M

∑
k=1

{
fk(θ) ifφk(θ)

0 if ¬φk(θ)

=


f1(θ) ifφ1(θ)
...

fM(θ) ifφM(θ)

= p(d|θ) by (4.9)

in which the third equality holds since constraintsφk are mutually exclusive.
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4.4.1 Deterministic Dependencies and Blocked Sampling

It is known that in the presence of determinism, Gibbs sampling gives poor results
[Poon and Domingos 2006]. In our setting, deterministic dependencies arise from the
definition of p(k|θ) in (4.10), were the value of k is decided by θ. This problem is
illustrated in Figure 4.5 by a simple example: A Gibbs sampler started from an initial
point:

O = (θ
(0)
1 ,θ(0)2 )

is trapped in the initial partition (A). The reason is that conditioned on the initial value
of the auxiliary variables, the partition is deterministically decided as being (A), and
conditioned on any point in (A), the auxiliary variables keep their initial values.

4.4.1.1 Blocked Gibbs

We avoid deterministic dependencies by Blocked sampling as follows:
At each step of Gibbs sampling, a parameter variable θi is jointly sampled with (at

least) one auxiliary variable k j conditioned on the remaining variables:

(θi, k j) ∼ p(θi, k j|θ−i, k− j)

This is done in 2 steps:

1. k j is marginalized out and θi is sampled (collapsed Gibbs sampling):

θi ∼ ∑
k j

p(k j|θ−i, k− j) · p(θi| k j,θ−i, k− j)

2. The value of k j is deterministically found givenθ:

k j ← v ∈ VAL(k j) s.t.φ j
v(θ) = true

whereφ j
v is the v-th constraint of the j-th likelihood function.

For instance in Figure 4.5, if for sampling θ2, k1 (or k2) is collapsed, then the next
sample will be in the union of partition (A) and (B) (resp. the union of (A) and (C)).
Note that in this example, collapsing k3 or k4 would not help because conditioned on
θ2 = θ0

2 the borders of partition (A) are determined by k1 and k2. More formally, under
such a condition the values of auxiliary variables k3 and k4 are determined by k1 and
k2.

4.4.1.2 Targeted Selection of Collapsed Auxiliary Variables

We provide a mechanism for finding auxiliary variables k j that are not determined by
the other auxiliary variables, k− j when jointly sampled with a parameter variable θi.

1In case the original piecewise function is partial (i.e. not defined on a subset of its domain), we can
assume that its value is 0 over that subset.
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We observe that the set of partitions satisfying the current valuation of k often differs
with its adjacent partitions in a single auxiliary variable. Since such a variable is not
determined by other variables, it can be used in the blocked sampling.

However, in case some likelihood functions share the same constraint, some adja-
cent partitions would differ in multiple auxiliary variables. In such cases, more than
one auxiliary variable should be used in blocked sampling.

Finding such auxiliary variables has a simple geometric interpretation. As such,
we explain it by a simple example depicted in Figure 4.5. Consider finding a proper
k j for the following blocked sampling:

p(θ1, k j|θ(0)2 , k− j)

It suffices to pass the end points of the (red dotted) line segment where,

p(θ1|θ(0)2 , k) > 0

by an extremely small value ε to the following end in points x and y,

x := (θL
1 ,θ(0)2 ) y := (θU

1 ,θ(0)2 )

which are located in partitions (B) and (C) respectively.
As it will be shown in Section 4.4.1.3, to guarantee the detailed balance of the

algorithm, with probability 0.5 the auxiliary variable that is not shared in (A) and (B)
(i.e. k1) should be collapsed otherwise k2 i.e. the auxiliary variable not in common
between (A) and (C) should be collapsed.

Let the process of finding auxiliary variables not shared with neighboring parti-
tions be discussed in a more formal and general way: In the i-th step of Gibbs sam-
pling i.e. sampling from the i-th parameter θi conditioned on the rest θ−i, the values
θL

i and θU
i are defined as follows:

θL
i := inf{θi | p(θi|θ−i, k) > 0} −ε
θU

i := sup{θi | p(θi|θ−i, k) > 0}+ε

where 0 < ε� 1.
In this way, the neighboring partitions (e.g. (B) and (C) in Figure 4.5) can be found.

Nonetheless, in order to find the auxiliary variables that differ between the current
partition (A) with its neighboring partitions (B) (and (C)) it is sufficient to test the
validity of the constraints that define the current partition for θL

1 (resp. θU
1 ) and pick

the one (or ones) that are not satisfied (k1 (resp. k2) in Figure 4.5).

4.4.1.3 Convergence to the target distribution

In Section 2.3.2.5 it was mentioned that an MCMC method converges to the desired
target distribution if (a) the Markov chain is associated with a single closed commu-
nicating class that is, any state is accessible from any other state and (b) the detailed
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balance holds.
It is well-known that in pathological examples, the first condition does not hold

for Gibbs sampling. In the case of the proposed method, such situations can occur
more frequently. For instance, consider a piecewise posterior which consists of some
positive probability islands. For the simplicity of discussion, also assume that the
auxiliary variables are binary and at each Gibbs step, a single auxiliary variable is col-
lapsed (as in Figure 4.5). While the Gibbs sampler can often bridge the 0-probability
segments, in our proposed method, states located in different islands are not acces-
sible from each other. The reason is that in the latter method, transitions between
partitions take place via direct neighboring partitions. To overcome this problem, in
such cases, more than one auxiliary variable should be collapsed at each step of Gibbs.
Clearly, in the extreme case where all the auxiliary variables are always collapsed, this
method is reduced to the plain Gibbs.

It seems reasonable to believe that detailed balance automatically holds for the
proposed method. Nonetheless, since there is a dependency between the collapsed
auxiliary variables and the current state of the sampler some concerns may be raised.
To remove such doubts, here we formally show that the detailed balance indeed holds.

Again, for the sake of simplicity we assume that the auxiliary variables are bivari-
ate and that at each step of Gibbs, a single auxiliary variable is collapsed since the
generalization of the argument is straightforward.

It is sufficient to show that in each i-th step of Gibbs sampling is reversible. That
is,

p(θi |θ−i) · T(θi → θ′i | θ−i) = p(θ′i |θ−i) · T(θ′i → θi | θ−i)

or equivalently,

T(θi → θ′i | θ−i) · p(θ1, . . . ,θi−1,θi,θi+1, . . . ,θD)

= T(θ′i → θi | θ−i) · p(θ1, . . . ,θi−1,θ′i ,θi+1, . . . ,θD) (4.11)

where D is the dimensionality of the space of parameters and T(θi → θ′i | θ−i) is the
probability that the i-th parameter is changed fromθi toθ′i if the rest of the parameters
are fixed. For notational ease let points a and b be defined as follows,

a = (θ1, . . . ,θi−1,θi,θi+1, . . . ,θD)

b = (θ1, . . . ,θi−1,θ′i ,θi+1, . . . ,θD)

Using this notation, the detailed balance equation 4.11 can be restated in the standard
form:

p(a) · T(a→ b) = p(b) · T(b→ a) (4.12)

If the points a and b belong to non-neighboring partitions then the probability of tran-
sition from one to the other via the proposed method is 0. Therefore, detailed balance
holds for this case. We study the case where a and b are in neighboring partitions
(say, R and R′) which are respectively associated with auxiliary variable vectors k and
k′ which differ in a single variable k j. The probability of transition from a to b is the
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probability that k j is block sampled (which is 0.5 since with equal probability one end
point of the line segment (θ−i, k) is continued) times the probability that b is sampled
from the line segment (θ−i, k− j):2

T(a→ b) = 0.5 · p(b |θ−i, k− j) = 0.5 · p(b)
p(θ−i, k− j)

With a similar reasoning,

T(b→ a) = 0.5 · p(a |θ−i, k− j) = 0.5 · p(a)
p(θ−i, k− j)

These two equations immediately lead to Equation 4.12 which completes the proof of
detailed balance for the proposed variation of Gibbs sampling.

4.5 Experimental Results

In this section we show that the mixing time of the proposed method, augmented Gibbs
sampling, is faster than Rejection sampling, baseline Gibbs and MH. The algorithms
are tested against the presented case studies that motivated our discussion. Namely,
Bayesian preference learning (BPPL) model of Section 4.1 and Market maker (MM) model
formalized in Section 4.2.

Models are configured as follows: In BPPL, we let η = 0.4 and the prior parameter
distribution is assumed to be uniform in a hypercube of side length 1 centered at 0. In
MM, we let L = 0, H = 20, ε = 2.5 and δ = 10.

For each combination of the parameter space dimensionality D and the number of
observed data n, we generate data points from each model and simulate the associated
expected value of ground truth posterior distribution by running rejection sampling
on a 4 core, 3.40GHz PC for 15 minutes. Subsequently, using each algorithm, particles
θ(1),θ(2) . . . are generated and the mean of the samples taken till each time point t is
computed:

θ̄(t) :=
N(t)

∑
i=1

θ(i)

where N(t) is the number of samples taken till time point t.
Based on the generated samples, The mean absolute error (MAE) that is the average

absolute error between the ground truth mean vector θ∗ and mean of samples taken
till each time point, i.e. θ̄(t), is computed:

MAE(t) = ||θ̄(t)−θ∗||1 =
1
D

D

∑
i=1
|θ̄i(t)−θ∗i |

2Note that the line segment (θ−i , k− j) is equivalent to,

(θ−i , k− j , k j = 1) ∨ (θ−i , k− j , k j = 2)

and therefore is spanned on both regions R and R′.
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Figure 4.6: Performance of Rejection, MH, baseline and augmented Gibbs (in terms of
the time (s) the samplers require to reach a MSE less than 3) on (a) & (b) BPPL and
(c) & (d) MM models against different configurations of the number of observed data
points and the dimensionality of the parameter space. In (a) & (c), the number of data
points varies from 2 to 20 while the dimensionality is fixed (resp. to 15 and 10). In
(b) & (d), the dimensionality varies from 2 to 80 while the number of observed data
points is fixed (resp. to 12 and 8).

The time till the absolute error reaches the threshold error 3.0 is recorded. For
each algorithm, three independent Markov chains are executed and the results are
averaged. The whole process is repeated 15 times and the results are averaged and
standard errors are computed.

We observe that in both models, the behavior of each algorithm has a particular
pattern (Figure 4.6). The speed of rejection sampling and consequently its mixing time
deteriorates rapidly as the number of observations increases.The reason is that by ob-
serving new data, the posterior density tends to concentrate in smaller areas, leaving
most of the space sparse and therefore hard to sample from by rejection sampling.
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It is known that the efficiency of MH depends crucially on the tuning of the pro-
posal. We carefully tuned MH to reach the optimal acceptance rate of 0.234 [Roberts
et al. 1997]. The experimental results show that MH is scalable in observations but its
mixing time increases rapidly as the dimensionality increases. These results are rather
surprising since we expected that as an MCMC, MH does not suffer from the curse of
dimensionality as rejection sampling does. A reason may be that piecewise distribu-
tions can be non-smooth or broken (see Figure 4.3) which is far from the characteristics
of the Gaussian proposal density used in MH.

The efficiency of the baseline Gibbs sampling in particular decreases as data points
increase since this leads to an exponential blow-up in the number of partitions in the
posterior density. On the other hand, Augmented Gibbs is scalable in both data and
dimension for both models. Interestingly, its efficiency even increases as dimensional-
ity increases from 2 to 5 — the reason may be that proportional to the total number of
posterior partitions, in lower dimensions the neighbors of each partition are not as nu-
merous. For instance, regardless of the number of observed data in the 2 dimensional
BPPL, each partition is neighbored by only two partitions (see Figure 4.5) leading to a
slow transfer between partitions. In higher dimensions however, this is often not the
case.

4.6 Conclusion

In Bayesian inference with piecewise likelihood models, the number of pieces in the
posterior can grow exponentially in the amount of observed data. In this chapter, we
tackled this problem by showing that such piecewise models can be transformed into
equivalent mixture models via introducing auxiliary discrete random variables each
of which is associated with one data point and its value is deterministically decided
by a piece in the likelihood function that corresponds to that observation.

By proposing a specific blocked Gibbs sampling mechanism for the generated aug-
mented model, we showed that on such models we can achieve an exponential-to-linear
reduction in space and time compared to a conventional Gibbs sampler. Unlike re-
jection sampling and baseline Gibbs sampling, the time complexity of the proposed
augmented Gibbs method does not grow exponentially with the amount of observed
data and yields faster mixing times in high dimensions than Metropolis-Hastings.

In a more general framework, this technique can be directly applied to any Graph-
ical model where the posterior is the product of a large number of piecewise potential
functions (regardless of their interpretations) since the augmentation trick prevents
the exponential blow up in the number of pieces caused by consecutive piecewise
multiplications. As such, a future extensions of this work can examine new appli-
cation of this work to non-Bayesian inference models. For example, some clustering
models can be formalized as piecewise models with latent cluster assignments for
each datum – the method proposed here allows linear-time Gibbs sampling in such
models. To this end, this work opens up a variety of future possibilities for efficient
asymptotically unbiased (Bayesian) inference in expressive piecewise graphical mod-
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els that to date have proved intractable or inaccurate for existing (Markov Chain)
Monte Carlo inference approaches.

Nonetheless, the limitations of the presented approach should also be recognized
and taken into account: An issue is that not all piecewise models can be expressed in
a significantly factorized form. On such models, augmented Gibbs sampling may not
perform much better than the baseline. The second issue is related to the convergence
of the augmented Gibbs: At each step of Gibbs sampling on the augmented model,
only a subset of space is sampled and this, as stated in Section 4.4.1.3, may lead to
more pathological examples where transitions between non-zero probability regions
is impossible and as a result, the Markov chain does not converge to the true target
distribution.

As such, the problem of sampling from highly piecewise distributions should not
be considered as being completely solved. In the next chapter we study highly piece-
wise distributions that are not necessarily factorized. On such models we will tackle
the problem of efficient Gibbs sampling by another strategy. That is, we will propose
increasing the efficiency of Gibbs sampling not by sampling from subsets of the vari-
able space but by increasing the sampling efficiency via reducing the computational
redundancies. As we will see, on an expressive class of models, in Gibbs sampling a
significant amount of per-sample computations can be avoided.
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Chapter 5

Symbolic Gibbs Sampling in
Algebraic Graphical Models

In theory, augmented Gibbs sampler presented in the previous chapter can be applied to
any graphical model. Nonetheless, it reveals its strength in models that are factorized
into several piecewise potential functions (via associating an augmented variable to
each factor).

However, in models that cannot effectively be factorized into a large number of
piecewise potentials, augmented Gibbs does not significantly outperform the baseline.
For instance, in the worse case where the model consists of a single piecewise potential
function that cannot be factorized, augmented Gibbs diminishes into the baseline.

In this chapter we present another powerful tool based on Gibbs sampling. The
design of this approximate inference mechanism is not based on any assumption on
the factorization of the joint density functions. Otherwise stated, in this chapter we
do not try to increase the performance of Gibbs sampling via sampling from sub-
sets of the variable space. Instead, we try to avoid most costly computations that are
traditionally carried out per sample (namely, the computation of the univariate CDF
functions that Gibbs sampling rely on) by computing them in closed form prior to the
sampling process. In order to be able to do so, we restrict the class of functions that
can be used as potential functions. More specifically, we consider polynomial-piecewise
fractional (PPF) models, that is, models where the borders of partitions are polynomi-
als and the function value in each partition is either a polynomial or a fraction with a
polynomial numerator and denominator.

A key insight is that on a large subset of PPFs, most costly computations required
for Gibbs sampling can be performed in closed-form and prior to the sampling process
rather than per sample. This saving leads to a very fast variation of Gibbs sampling
that we refer to as Symbolic Gibbs sampling.

5.1 Introduction

Recently, piecewise polynomial representations of distributions in graphical models
have attracted attention for their closed-form analytical properties. However, to date,
such forms have been quite restricted as evidenced by the piecewise polynomials with

89
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hyperrectangular, hyper-rhombus and linear partitioning constraints that have been
used in existing work [Shenoy and West 2011; Shenoy 2012; Sanner and Abbasnejad
2012]. In this chapter we focus on, polynomial-piecewise fractional (PPF) functions —
a highly expressive family of piecewise algebraic functions that is a superset of the
aforementioned families and is significantly larger.

An important characteristic of the aforementioned PPF family is that it remains
closed under polynomial and fractional random variable transformations. It is not
very hard to show that the later property holds in case the transformation is invertible
with respect to at least one random variable (using a Jacobian-based change of vari-
ables). In this chapter, we will leverage the properties of Dirac delta and show that
the above predicate often holds even in the case the transformation is not invertible
with respect to any random variable. Being closed under variable transformation is
an important property because such transformations are tools that enable inference in
the presence of observed constraints among random variables. Probabilistic inference
in many real-world problems requires graphical models with deterministic algebraic
constraints between random variables. These constraints typically emerge in proba-
bilistic inference applications where instead of direct observation of random variables,
functions of them are observed. For instance in a Newtonian mechanical system the
prior distribution of mass M and velocity V of a particle might be given. However,
these quantities may not be directly observable. Instead, the system’s momentum
P = MV, that is, the product of the random variables might be observed. Endless
number of such models can be found in the realm of physical measurements as well
as other domains.

Such constraints lead to posterior density functions that are only positive on sub-
manifolds of the space of random variables. Exact inference on the corresponding
models is in general impossible and approximate inference is often extremely hard
and often ends in unsatisfactory approximation error bounds. A solution is to col-
lapse random variables, that is, to reduce the dimensionality of the variable space via
random variable transformations. Nonetheless, as we will see shortly, the collapsing
process can easily lead to highly piecewise and sophisticated density functions that
pose challenges for existing probabilistic inference tools.

The inference mechanism that will be presented in this chapter is an efficient vari-
ation of Gibbs sampling that handles approximate inference on a large subset of the
aforementioned problematic models. A key insight is that many piecewise algebraic
functions permit one analytical integral. This means that the conditional CDFs re-
quired for Gibbs sampling can often be computed automatically and in closed form
prior to the sampling process rather than per sample. This property immediately leads
to a symbolic Gibbs sampler that is the main contribution of the present chapter.

In the next section we present a formal representation of the aforementioned mo-
mentum model. This model is used as running example throughout the chapter. In
Section 5.3 we present our collapsing algorithm for inference in models with deter-
ministic dependencies among random variables. In Section 5.4 we introduce the fam-
ily or piecewise algebraic fractional (PPF) models and show that they are closed under
operations required the collapsing algorithm. In Section 5.5 the symbolic Gibbs algo-
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M1 V1

P1

M2V2

P2

Ptot

Figure 5.1: Bayesian network for the momentum model. P1, P2 and consequently
Ptot = P1 + P2 are deterministic functions of M1, V1, M2 and V2 and the shaded circle
indicate that Ptot is observed.

rithm is introduced. Experimental results are presented in Section 5.6. These results
show that the proposed sampler converges at least an order of magnitude faster than
existing Monte Carlo samplers.

5.2 Momentum Model

To motivate the discussion consider the following model which will be used as the
running example throughout.

Masses M1 and M2 with velocities V1 and V2 (and consequently momenta P1 = M1V1 and
P2 = M2V2) collide to form a single mass (M1 + M2) with momentum Ptot = P1 + P2

(assuming that there is no dissipation). The masses and velocities are unknown but their prior
distributions are given as follows:1

p(M1) = U (0.1, 2.1) p(M2)=U (0.1, 2.1)

p(V1) = U (−2, 2) p(V2 |V1) = U (−2, V1) (5.1)

The conditional dependencies of the random variables of this model are illustrated in the
Bayesian network of Figure 5.1.

Assume that the total momentum of the produced mass M3 is measured to be 3.0. Condi-
tioned on this value, we wish to infer the posterior probability of the collided masses and their
initial velocities. That is,

p(M1, M2, V1, V2 | Ptot = 3)

�
Despite its humble appearance, the probabilistic inference on this model is chal-

lenging. Let’s take a closer look on the nature of the problem by manually carrying
out the computations required for probabilistic reasoning. It can easily be seen that in

1U (a, b) denotes a uniform distribution on interval [a, b].
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the momentum model, the joint density of masses and velocities is

p(M1, M2, V1, V2) =


1

16V1+32 if 0.1 < M1 < 2.1, 0.1 < M2 < 2.1,

−2 < V1 < 2, −2 < V2 < V1

0 otherwise

(5.2)

which is a 4 dimensional function from which samples can be taken fairly easily.
On the other hand, the total momentum Ptot is determined by random variables

M1, M2, V1 and V2:
Ptot = M1V1 + M2V2

the following likelihood:

p(Ptot = 3 |M1, V1, M2, V2) = δ(M1V1 + M2V2 − 3) (5.3)

where δ(·) denotes the Dirac delta – a normal distribution with a variance tending to
0. That is,

δ(x) := lim
a→0

δa(x)

where
δa(x) :=

1
a
√
π

e−x2/a2

By Bayes rule, the posterior,

p(M1, M2, V1, V2 | Ptot = 3)

is proportional to the product of equations (5.2) and (5.3). Note that despite being
4-dimensional, the mass of this function is only non-zero on a region that tends to the
3 dimensional hypersurface:

M1V1 + M2V2 = 3

In general, observation of an algebraic relationship between random variables of
an N-dimensional prior space leads to a posterior mass concentrated on an (N−1)-
dimensional hyperspace. Due to this dimensionality mismatch, direct MCMC sam-
pling from such models is almost impossible (unless the proposal can be chosen in
such a way that the MCMC trajectory follows the manifold). As a tangible example,
note that taking samples from a 2D curve via random walk in a 3D continuous space
is impossible.

5.3 Stochastic-Deterministic graphical models

To deal with graphical models where some variables are deterministic functions of
others, we introduce some new notation and specification, as follows:

We assume that the set of reference random variables X consists of disjoint sets
of stochastic and deterministic (random) variables which are denoted as Y and Z respec-
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tively.
X := Y∪ Z

We also assume that for each deterministic (random) variable Z j ∈ Z there exists
exactly one potential Ψ (called a deterministic potential) in the form δ(G j(·)−Z j) where
δ denotes the Dirac delta and G j (which we call the logical value associated with Z j) is
an expression that does not involve Z j.2,3 We further assume that the sets of variables
involved in different deterministic potential functions are disjoint.4

For instance, in the momentum model, P1 is a deterministic variable associated with
deterministic potential δ(M1V1 − P1) and therefore, the logical value of P1 is M1V1.

We denote the set of all potential functions (i.e. factors that make the prior joint
density function) by Ψ.

p(X) ∝ ∏
Ψ∈Ψ

Ψi(·)

The set of all deterministic potentials is denoted by ΨD. The remaining potentials
ΨS := Ψ\ΨD are called stochastic and do not involve Dirac deltas. Therefore:

p(Y, Z) ∝ ∏
Ψ∈ΨS

Ψi(·)∏
j
δ
(
G j(·)− Z j

)
(5.4)

5.3.1 Collapsing determinism (δ-collapsing)

In this section we present an algorithm (called δ-collapsing, throughout) to transform
Stochastic-Deterministic graphical models to pure stochastic graphical models with
fewer variables. This process is formalized in Algorithm 10.

Using MCMC methods, the variables of the latter graphical model can then be
sampled. Provided with these samples, (the particle values associated with) the for-
mer graphical model can be reconstructed.

To clarify Algorithm 10, it is run on the momentum model: In the momentum model,
the evidence is the singleton set

E := {〈Ptot, 3〉}

and the potentials can be indexed as follows:

Ψ1 to Ψ4 as in Eq. (5.1) Ψ5 := δ(M1V1 − P1)

Ψ6 := δ(M2V2 − P2) Ψ7 := δ(P1 + P2 − Ptot)

The algorithm procedure is as follows:

2Circular/recursive definition of deterministic variables are not allowed either.
3 δ
(
G j(·)− Z j

)
should be thought of as a limit of a normal distribution centered at G j(·) and a vari-

ance that tends to zero. We leave it to the graphical model designer to specify a deterministic potential
according to the limiting process that produces the intended distribution. See the literature on the Borel-
Kolmogorov paradox [Kolmogorov 1950] for more details.

4The reason is that the product of Dirac delta functions can only be defined under narrow circum-
stances [?].
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Algorithm 10: δ-COLLAPSING (E ; Ψ)

Input: E := {〈Ei, ei〉}i: evidence variables and valuations. Ψ := ΨS ∪ΨD:
potentials where ΨS are stochastic and ΨD :=

{
ΨZ j := δ

(
G j(·)− Z j

)
|Z j ∈ Z

}
are

deterministic.
Output unnormalized posterior joint of a subset of variables from which, all other
variables can be reconstructed.

//STEP 1. Observed variable instantiation:
for all 〈E, e〉 ∈ E do

for all Ψ ∈ Ψ do Ψ← Ψ|E←e
end for

//STEP 2. Marginalizing determinism:
for all ΨZ j = δ

(
G j(·)− Z j

)
∈ ΨD do

forall Ψ ∈ Ψ do Ψ← Ψ|Z←G j

end for

//STEP 3. Dimension reduction:
t := 0 // counter
Φt := ∏Ψ∈ΨS Ψ // Φ0: product of stochastic potentials
for all 〈Z j ∈ Z, c〉 ∈ E do

let Y be a variable involved in G j such that Υ := SOLVE(G j(·)− c; Y) 6= ∅
(assuming that at least one such variable exists.)

Φt+1 := ∑
Υ∈Υ

Φt|Y←Υ∣∣(∂G j(·)/∂Y)|Y←Υ

∣∣ (5.5)

t← t + 1
end for
Return Φt

• Step 1. Observed variable instantiation. In all potentials (either deterministic
or statistical), all observed stochastic/deterministic variables are instantiated.

Therefore, in the momentum model, Ψ7 is converted to δ(P1 + P2 − 3).

• Step 2. Marginalizing determinism. In all potentials, all deterministic variables
Z j, are substituted by their logical values G j(·) (so, a potential δ(G j(·)−Z j) itself
is replaced by 1.) By the definition of Dirac δ, this simply means that unobserved
deterministic variables are marginalized out.

Therefore, in the momentum model, the following conversions take place:

Ψ5 ← 1 Ψ6 ← 1 Ψ7 ← δ(M1V1 + M2V2 − 3)

• Step 3. Dimension reduction. Beginning with the (unnormalized) joint density
of all stochastic variables, for each observed deterministic random variable Z j =
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Algorithm 11: SOLVE(G; X)

Input: G is a polynomial fraction and X is a variable involved in G.
Output: Set of all solutions (i.e. roots) of G w.r.t. X (i.e. by treating other variables
as constants). The roots must be simple and in the form of polynomial fractions.
(Note: In case factorization is impossible or some roots are multiple, i.e. not
distinct, ∅ is returned.)

c (where c is a constant), (G j(·) − c) is solved w.r.t. some stochastic variable
Y (assuming that it is solvable w.r.t. at least one variable with simple roots in
the form of polynomial fractions). Subsequently, by applying Theorem 1, Y is
excluded from the joint.

In the momentum model,

Φ0 = p(M1, M2, V1, V2)=


1

16V1+32 if 0.1 < M1 < 2.1, 0.1 < M2 < 2.1,

−2 < V1 < 2, −2 < V2 < V1

0 otherwise

We solve (G7 − 3), i.e.
(M1V1 + M2V2 − 3)

with respect to M1 (It could alternatively be solved w.r.t. V1, M2 or V2):

SOLVE(M1V1 + M2V2 − 3; M1) =

{(
3−M2V2

V1

)}
(5.6)

Finally, since ∣∣∣∣∂(M1V1 + M2V2)

∂M1

∣∣∣∣ = |V1|

by (5.5):

Φ1 :=



1
V1(16V1+32) if 0 < V1, 0.1 < 3−M2V2

V1
< 2.1, 0.1 < M2 < 2.1,

−2 < V1 < 2, −2 < V2 < V1
−1

V1(16V1+32) if V1 < 0, 0.1 < 3−M2V2
V1

< 2.1, 0.1 < M2 < 2.1,

−2 < V1 < 2, −2 < V2 < V1

0 otherwise

(5.7)

which is proportional to p(M2, V1, V2 | Ptot = 3).

5.3.1.1 Proof of correctness

In Algorithm 10, the core operation that requires proof is formula 5.5. The following
theorem shows that Dirac deltas can be eliminated with respect to the aforementioned
formula.
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Theorem 1. Let,
p(Z= z|x1, . . . , xn) = δ

(
f (x1, . . . , xn)− z

)
where f (x1, . . . , xn)− z = 0 has real and simple roots for x1 with a non-vanishing continuous
derivative

∂ f (x1, . . . , xn)

∂x1

at all those roots. Denote the set of all roots by

X1 = {x1 | f (x1, . . . , xn) = z} (5.8)

(Note that each element of X1 is a function of the remaining variables x2, . . . , xn, z.) Then:

p(x2, . . . , xn | Z = z) ∝ ∑
xi

1∈X1

p(X1 = xi
1, x2, . . . , xn)∣∣∣(∂ f (x1, . . . , xn)/∂x1

)
|x1←xi

1

∣∣∣ (5.9)

Proof.

p(x2, . . . , xn | Z = z) =
∫ ∞

x1=−∞ p(x1, . . . , xn | Z = z)dx1

∝
∫ ∞

x1=−∞ p(x1, . . . , xn, Z = z)dx1

=
∫ ∞
−∞ p(x1, . . . , xn)p(Z = z | x1, . . . , xn) dx1

=
∫ ∞
−∞ p(x1, . . . , xn)δ

(
f (x1, . . . , xn)− z

)
dx1 (5.10)

According to [Gel’fand and Shilov 1964] there is a unique way to define the composi-
tion of Dirac delta with an arbitrary function h(x) such that the formula of change of
variables in density functions holds:

δ(h(x)) = ∑
i

δ(x− ri)

|∂h(x)/∂x| (5.11)

where ri are all (real and simple) roots of h(x) and h(x) is continuous and differen-
tiable in the root points. By (5.11), (5.10) and Tonelli’s theorem,5

p(x2, . . . , xn | Z = z) ∝ ∑
xi

1∈X1

∫∞
−∞ p(x1, x2, . . . , xn)δ(x1 − xi

1) dx1∣∣∣(∂ f (x1, . . . , xn)/∂x1
)
|x1←xi

1

∣∣∣
which implies (5.9).

The end result of Algorithm 10, Φt, is proportional to the posterior joint over a
subset random variables. Inference can be carried out by sampling from this density.

5Tonelli’s theorem says that for non-negative functions, sum and integral are interchangeable.
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5.3.1.2 Reconstructing eliminated variables

Even though we have eliminated variables, we can still generate samples for them
given the sample values of the non-eliminated variables. To do this, the eliminated
variables are reconstructed in the reverse order they are eliminated: If in an execution
of dimension reduction (Step 3), G j(·)− c is invertible w.r.t. a variable Y, that is, if

SOLVE(G j(·)− c; Y)

is a singleton {Υ1}, then the reconstructed sample value of Y is simply Υ1(s) in which
s denotes the value of the variables that are already sampled or reconstructed.

For instance, in the momentum model, let

s = [M2 = m(0)
2 , V1 = v(0)1 , V2 = v(0)2 ]

be a sample vector taken from Φ1. By (5.6), the sample value constructed for M1 is

m(0)
1 :=

3−m(0)
2 v(0)2

v(0)1

In the general case, if in t-th execution of dimension reduction

SOLVE(G j(·)− c; Y) = {Υ1, . . . , Υr}

then we define

φι :=
Φt−1|Y←Υι∣∣(∂G j(·)/∂Y)|Y←Υι

∣∣ for ι = 1, . . . , r

The constructed sample value of Y is Υι(s) with a probability proportional to φι(s)
since by (5.5),

Φt =
r

∑
ι=1
φι

5.3.2 Notes about the Dirac delta collapsing mechanism

In the subsequent sections of this chapter, we will present an effective MCMC based
tool for conducting inference on piecewise continuous density functions such as the
models generated via δ-collapsing mechanism. In the remaining part of the current
section, however, we point out two important facts about the collapsing mechanism.

• The relation between δ-collapsing and Jacobian-based random variable trans-
formation. Dirac delta collapsing mechanism is a generalization of Jacobian-
based approach. That is, in a special case where an observation is an invertible
function of a variable x1 (i.e. in equation (5.8), X1 is singleton), then Theorem 1
can be alternatively proved by a Jacobian-based change of random variable. The
Jacobian based proof sketch of Theorem 1 is as follows:
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Let X1 := {x1
1}. Note that by (5.8)

f (x1, . . . , xn) = z ⇐⇒ x1 = x1
1,

therefore, x1
1 is the inverse of f (w.r.t. z):

x1
1 = f−1(z, x2, . . . , xn) (5.12)

By applying the formula of Jacobian-based change of random variable:

p(Z = z, x2, . . . , xn) = p
(
X1 = f−1(z, ·), x2, . . . , xn

)
·
∣∣∣∣∂ f−1(z, ·)

∂z

∣∣∣∣ (5.13)

= p
(
X1 = f−1(z, ·), x2, . . . , xn

)
· 1∣∣∣∣ ∂ f

(
f−1(z,·),x2 ,...,xn

)
∂x1

∣∣∣∣ (5.14)

=
p
(
X1 = x1

1, x2, . . . , xn
)∣∣∣(∂ f

(
x1, x2, . . . , xn

)
/∂x1)|x1←x1

1

∣∣∣ (5.15)

where in (5.14), inverse function derivative rule is applied and in (5.15), (5.12) is
substituted. Since p(x2, . . . , xn | Z = z) is proportional to p(Z = z, x2, . . . , xn),
the proof of this special case of Theorem 1 via change of variables is complete.

• Limitation of δ-collapsing (and Jacobian-based approaches) As stated in foot-
note 3 (Section 5.3), the observation of functions of random variables should be
considered as the limit of an observation with normal noise where the noise vari-
ance tends to zero. This is important because different limiting processes may
lead to different results (see Borel-Kolmogorov paradox [Kolmogorov 1950] for
details). Otherwise stated, the limiting processes of the possible function obser-
vations should be defined in the model. To clarify the discussion consider the
following example:

Let a model include a deterministic potential

δ(XY− Z) (5.16)

If it is observed that Z = 5, then by (5.15)

p(y | Z = 5) ∝ p(X = 5/y, Y = y)∣∣(∂xy/∂x)|x←5/y
∣∣ =

p(X = 5/y, Y = y)
|y| (5.17)

If one neglects the limiting process of the model and only concentrates on the
observation, he may conduct the following erroneous reasoning:

Since Z = XY, the observation indicates that XY = 5 which in its turn is equivalent to
observing X− 5/Y = 0. Now, we “assume” that the model contains a newly introduced
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deterministic random variable W associated with the following deterministic potential:

δ(X− 5/Y−W) (5.18)

According to the observation, W = 0. By utilizing (5.15):

p(y |W = 0) ∝ p(X = 5/y, Y = y)∣∣∣(∂(x− 5y)/∂x
)∣∣

x←5/y

∣∣∣ = p(X = 5/y, Y = y) (5.19)

The above reasoning is clearly erroneous since (5.19) is not equal to (5.17). Simi-
lar to Borel-Kolmogorov paradox, the root of this apparently paradoxical result
is that different observation noise forms lead to different outcomes and the dif-
ference persists in the limit. If the model designer is aware of the nature of
measurements involved in the process of observation (using the domain knowl-
edge about the process), the true limiting process can be stated in the model via
its corresponding deterministic potential. For instance, if in the above example
the measurement actually takes place on the product of X and Y, e.g., if X and Y
represent the mass and velocity of an object but the measurement takes place on
the momentum of the object, then it makes sense to define the limiting process
by (5.16) rather than (5.18). On the other hand, in case the nature of measure-
ment is unknown, the use of δ-collapsing/Jacobian-based approaches may not
be justified. In Section 7.2, we will return to this issue where we will briefly
mention an alternative solution.

The focus of the succeeding sections of this chapter is on effective inference on
models generated via δ-collapsing or similar approaches that lead to piecewise mod-
els.

5.4 Polynomial Piecewise Fractionals (PPFs)

Now that we have collapsed out determinism, we can apply Gibbs sampling. Recall
from Section 2.3.2.7 that Gibbs sampling from an N-dimensional variable space

X = {X1, . . . , XN}

takes place in N steps. In each i-th step, Xi is sampled conditioned on the last realiza-
tion of the others:

xi ∼ p(Xi | x−i)

To perform this task, the following univariate (conditional) cumulative distribution func-
tion (CDF) should be computed.

CDF(Xi | x−i) ∝
∫ Xi

−∞p(Xi = t, X−i = x−i) dt (5.20)

The aim of symbolic Gibbs is to compute univariate CDFs that are in the form 5.20,
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analytically and prior to sampling and in an automated manner. However, this task
requires a univariate symbolic integral and in the general case, this is not always possi-
ble. In this section, we address this issue by introducing a rich family of distributions
(namely PPFs for polynomial piecewise fractional functions) that remain closed under
many algebraic operations including all operations required for δ-collapsing. We also
show that PPF*, an expressive subset of the PPF family, have analytical univariate inte-
grals. This enables an efficient variation of Gibbs sampling that will be introduced in
Section 5.5.

5.4.1 Definition of a polynomial piecewise fractional function (PPF)

A PPF is a function in the form f = ∑
m
i=1 I[φi] · fi where I[·] denotes the indicator

function. Using expanded notation,

f =


f1 ifφ1
...

fm ifφm

=


N1
D1

ifϕ1,1 ≶ 0, ϕ1,2 ≶ 0, . . .
...
Nm
Dm

ifϕm,1 ≶ 0, ϕm,2 ≶ 0, . . .

(5.21)

where each sub-function fi := Ni
Di

is a (multivariate) polynomial fraction and conditions
φi partition the space of function variables. Eachφi is a conjunctions of some inequal-
ities (≶ stands for > or <)6 where each atomic constraintϕi, j is a polynomial.

Evidently, this class is very expressive. Other distributions can also be approxi-
mated by this form via Taylor series expansion or other existing approximation tools
[Shenoy and West 2011].

5.4.2 Some properties of the PPF family

PPFs are closed under elementary operations, e.g.:

{
f1 ifφ1

f2 ifφ2
×
{

g1 if ψ1

g2 if ψn
=


f1 × g1 ifφ1,ψ1

f1 × g2 ifφ1,ψ2

f2 × g1 ifφ2,ψ1

f2 × g2 ifφ2,ψ2

PPFs are closed under polynomial fractional substitution.

f |x← F
G
=


f1|x← F

G
ifφ1|x← F

G
...

fm|x← F
G

ifφm|x← F
G

(5.22)

6We do not define the value of piecewise density functions on their partitioning hyperplanes and do
not allow δ(·) potentials have roots on the partitions.
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The reason is that in the r.h.s of (5.22), sub-functions fi|x← F
G

are polynomial fractions
(PFs) (since PFs are closed under PF-substitution). Conditionsφi|x← F

G
are not polyno-

mial (they are PF) but can be restated as (multiple) case-statements with polynomial
conditions. E.g.:

 f1 if H1
H2

> 0
...

 =


f1 if H1 > 0, H2 > 0

f1 if H1 < 0, H2 < 0

...

PPFs are also closed under absolute value and other similar piecewise functions, e.g.:

∣∣∣∣∣∣


N1
D1

ifφ1
...

∣∣∣∣∣∣ =


N1
D1

if N1 > 0, D1 > 0,φ1
N1
D1

if N1 < 0, D1 < 0,φ1
−N1
D1

if N1 > 0, D1 < 0,φ1
−N1
D1

if N1 < 0, D1 > 0,φ1

...

Therefore, PPFs are closed under collapsing determinism.

5.4.3 Analytic integration

In general, PPFs are not closed under integration; however, a large subset of them
have closed-form single variable integrals. We focus on the following fairly expressive
subset of PPFs:

Definition 1. A PPF* is a PPF in which:

1. Atomic constraints ϕi, j are factorized into terms where the maximum degree of each
variable is at most 2.

2. The denominator of each sub-function can be factorized into polynomials in which the
maximum degree of each variable is at most 2.

Here is an example of a PPF* case-statement:

x2 y3 + 7xz + 10
(5xy2 + 2)(y + x)3 if (y2 + z2 − 1)(x2 + 2xy) > 0 (5.23)

5.4.3.1 Analytic univariate PPF* integration

Now we provide a procedure to perform integration on PPF* functions.
It can be shown that if in a PPF* all variables except one are instantiated, the result-

ing univariate function has a closed form integral. To perform exact Gibbs sampling,
this is sufficient because in each step of Gibbs sampling only one variable is uninstan-
tiated.
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However, we want to go a step further and compute univariate integrals of multi-
variate piecewise functions without instantiating the remaining variables.

This may look impossible since in the latter case, the integration bounds depend
on the values of uninstantiated conditions. But as the following procedure shows, it
is indeed possible for the PPF* class:

Suppose
∫ β
α f dx is intended where f is a PPF*.

1. (Partitioning). The integral of the piecewise function f is the summation of its
case statement integrals:

∫ m

∑
i=1

I[φi] · fi dx =
m

∑
i=1

∫
I[φi] · fi dx

Therefore we only need to show that a single PPF* case-statement is integrable.

2. (Canonicalization). A PPF* case statement can be restated in the form of multiple
case statements in which the degree of each variable in each atomic constraint is
at most 2. For instance, (5.23) can be restated as:

x2 y3+7xz+10
(5xy2+2)(y+x)3 if (y2 + z2 − 1) > 0, (x2 + 2xy) > 0

x2 y3+7xz+10
(5xy2+2)(y+x)3 if (y2 + z2 − 1) < 0, (x2 + 2xy) < 0

(5.24)

3. (Condition solution). For the integration variable x, a PPF* case statement can
be transformed into a piecewise structure with atomic constraints in the form
x > Li or x < Ui or Ii > 0, where Li, Ui and Ii are algebraic expressions (not
necessarily polynomials) that do not involve x.

For instance, if expressions A, B and C do not involve x, the case statement (5.25)
is replaced by case statements (5.26).

f1 if (A · x2 + B · x + C) > 0 (5.25)


f1 if (A > 0), (x > −B+

√
B2−4AC

2A )

f1 if (A > 0), (x < −B−
√

B2−4AC
2A )

f1 if (A < 0), (x > −B−
√

B2−4AC
2A ), (x < −B+

√
B2−4AC

2A )

(5.26)

3. (Bounding). The bounded integral of a case statement associated with {Li}i,
{Ui}i and {Ii}i is itself a case-statement with the same independent constraints,
lower bound LB =max{α, Li} and upper bound UB =min{β, Ui}. For instance
consider the following example where the lower bound, upper bound and inde-
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pendent constraints are colored blue, green and red, respectively:∫ β

α

[
x3 + xy if (x > 3), (x > y + 1), (x < y2 − 7), (−y/z > 1), (y > 0)

]
dx =[ ∫ min{β, y2−7}

max{α, 3, y+1}
x3 + xy dx

]
if (−y

z
> 1) ∧ (y > 0)

4. (sub-function integration). What remains is to compute infinite integral of
sub-functions. The restrictions imposed on PPF* sub-functions guarantee that
they have closed-form univariate integrals. These integrals are computed by
performing polynomial division (in case the degree of x in the sub-function’s
numerator is more than its denominator), followed by partial fraction decompo-
sition and finally, using a short list of indefinite integration rules.

For instance, to compute the following integral,

∫ x4 + x3 + x2 + 1
x2 + x− 2

dx

by polynomial division we get,

x4 + x3 + x2 + 1
x2 + x− 2

= x2 + 3 +
−3x + 7

(x + 2)(x− 1)

and by partial fractional decomposition we end in

x2 + 3 +
−3x + 7

(x + 2)(x− 1)
= x2 + 3− (13/3)

1
x + 2

+ (4/3)
1

x− 1

Therefore, by the rule ∫ 1
x + a

dx = ln |x + a|+ C

the integration is as follows:

∫ x4 + x3 + x2 + 1
x2 + x− 2

dx = (1/3)x3 + 3x− (13/3) ln |x + 2|+ (4/3) ln |x− 1|+ C

5.5 Symbolic Gibbs Sampling

Our symbolic Gibbs sampling is based on a simple but significantly useful insight: If
p(X1, . . . , XN) has analytic integrals w.r.t. all variables Xi (as is the case with PPF*
densities), then the costly CDF computations can be done prior to the sampling process
rather than per sample. It is sufficient to construct a mapping F from variables Xi to
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their corresponding (unnormalized conditional) analytical CDFs.

F : {X1, . . . XN} → (RN → R+ ∪ {0})

Xi 7→
∫ Xi

−∞p(Xi = t, X−i) dt (5.27)

Note that the difference between (5.20) and (5.27) is that in the former, all variables
except Xi are already instantiated therefore CDF(Xi | x−i) is a univariate function but
F is N-variate since variables X−i are kept uninstantiated and symbolic. Provided
with such a map, in the actual sampling process, to sample xi ∼ p(Xi | x−i), it is suffi-
cient to instantiate the analytical CDF associated to Xi with x−i to obtain the appropri-
ate univariate conditional CDF (see Algorithm 12). This reduces the number of CDF
computations from N · T to N where T is the number of taken samples.

If CDF inversion (required for inverse transform sampling) is also computed an-
alytically, then Gibbs sampling may be done fully analytically. However, analytical
inversion of PPF*s can be very complicated and instead in the current implementa-
tion, we approximate the CDF−1 computation via binary search. This requires several
function evaluations per sample. Nonetheless, (unlike integration), function evalua-
tion is a very fast operation. Therefore, this suffices for highly efficient Gibbs sampling
as we will show experimentally in the next section.

Algorithm 12: SYMBOLICGIBBS(X, x(0),F , T)

Input: random variables X := 〈X1, . . . , XN〉; initialization x(0) := 〈x(0)1 , . . . , x(0)N 〉;
a mapping F from X to analytical conditional CDFs; desired number of output
samples T.
Output: a sequence of samples.
for t = 1, 2, . . . T do
〈x(t)1 , . . . , x(t)N 〉 ← 〈x

(t−1)
1 , . . . , x(t−1)

N 〉
for each Xi ∈ X do

F(X)← F (Xi) //analytic conditional CDF w.r.t. Xi

CDF(Xi)← F(x(t)1 , . . . , x(t)i−1, Xi, x(t)i+1, . . . , x(t)N )

//Inverse transform sampling:
u ∼ U (0, Cdf(∞))

x(t)i ← CDF−1(u)
end for

end for
Return

〈
〈x(1)1 , . . . , x(1)N 〉, . . . , 〈x(T)1 , . . . , x(T)N 〉

〉
;

5.6 Experimental Results

Our experiments are designed to study the following questions:
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(a) (b)

(c) (c)

(e) (f)

Figure 5.2: Prior/posterior joint distributions of pairs of random variables in the mo-
mentum model. (a) p(M1, V1), (b) p(M1, V1 | Ptot = 3), (c) p(M1, V1 | Ptot = 3, V2 = 0.2),
(d) p(V1, V2), (e) p(V1, V2 | Ptot = 3), (f) p(V1, V2 |M1 = 2, Ptot = 3) using rejection
sampling on the δ-collapsed model.
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(a) SymGibbs (b) MH

(c) HMC (high noise) (d) HMC (low noise)

(e) SMC (high noise) (f) SMC (low noise)

Figure 5.3: 10000 samples taken from the distribution of Figure (5.2-c) using (a) Sym-
bolic Gibbs sampler and(b) MH with proposal variance 0.8 on the reduced-dimension
model as well as (c) Hamiltonian Monte Carlo (HMC) with a measurement error vari-
ance 0.2, , (d) and 0.01 as well as Anglican implementation of SMC algorithm with pa-
rameters (e) σ2

V2
= 0.01, σ2

Ptot
= 0.2 and (f) σ2

V2
= 0.01, σ2

Ptot
= 0.1 on the approximated-

by-noise model.



§5.6 Experimental Results 107

Table 5.1: Parameters corresponding the following experimental models: asymmetric
momentum model(AMM), symmetric multi-object momentum model(SMM), build-
ing wiring model (BWM).

# Experiment τ HMC SMC Evidence

1 AMM - σ2
Pt
= 0.2 σ2

V2
= 0.01, σ2

Pt
= 0.2 Pt = 3

(in Fig. 5.3-c) (in Fig. 5.3-e)

σ2
Pt
= 0.00001 σ2

V2
= 0.01, σ2

Pt
= 0.1 V2 = 0.2

(in Fig. 5.3-d) (in Fig. 5.3-f)

2 SMM 0.3 σ2
Pt
= 0.05 σ2

Pt
= 0.1 Pt = 1.5n

3 BWM 0.045 σ2
G = 0.02 σ2

G = 0.07 G = n/10.17

(a) Posterior quality. For our rich class of piecewise algebraic graphical models
with nonlinear deterministic constraints, what general qualities of posteriors
arise in terms of their modality, continuity, shape of support, etc.?

(b) MCMC comparison. How does Symbolic Gibbs perform compared to other
MCMC methods on such posteriors in terms of sampling quality and the con-
vergence rate to the correct steady-state?

(c) Handling determinism. How is the sampling performance affected if instead of
δ-collapsing, the deterministic constraints are relaxed by noise as done in previ-
ous work?

The compared MCMC algorithms, the utilized measurements and the experimental
models are introduced in Sections 5.6.1, 5.6.2 and 5.6.3 respectively. The experimental
evaluations are discussed in Section 5.6.4.

5.6.1 Algorithms

We compare the proposed symbolic Gibbs sampler (SymGibbs) to baseline Gibbs (BaseG-
ibbs) [Pearl 1987], rejection sampling (Rej) [Hammersley and Handscomb 1964], tuned
Metropolis-Hastings (MH) [Roberts et al. 1997], Hamiltonian Monte Carlo (HMC) using
Stan probabilistic programming language [Stan Development Team 2014] and Sequen-
tial Monte Carlo (SMC) using Anglican probabilistic programming language [Wood
et al. 2014].7

SymGibbs, BaseGibbs and MH are run on δ-collapsed models while in the case of
HMC and SMC, determinism is softened by observation noise. It should be mentioned
that the state-of-the-art probabilistic programming languages, disallow deterministic

7We also tested the other algorithm implemented by Anglican, namely Particle-Gibbs (PGibbs) (a vari-
ation of Particle-MCMC[Andrieu et al. 2010]) and random database (RDB) (an MH-based algorithm intro-
duced in [Wingate et al. 2011]) (see [Wood et al. 2014]). In our experimental models, the performance of
these algorithms is very similar to (SMC). Therefore, for the readability of the plots, we did not depict
them.
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relationships among continuous random variables be observed.8 The solution that
these off-the-shelf inference frameworks often suggest (or impose) is to approximate
the observed determinism via adding noise to the observation [Patil et al. 2010].9

SymGibbs and BaseGibbs require no tuning. MH is automatically tuned after
[Roberts et al. 1997] by testing 200 equidistant proposal variances in interval (0, 0.1]
and accepting a variance for which the acceptance rate closer to 0.24.

To soften the determinism in HMC and SMC, the observation of a determinis-
tic variable Z is approximated by observation of a newly introduced variable with
a Gaussian prior centered at Z and with noise variance (parameter) σ2

Z. Anglican’s
syntax requires adding noise to all observed variables. Therefore, in the case of SMC,
stochastic observations are also associated with noise parameters. All used param-
eters are summarized in Table 5.1. SymGibbs, BaseGibbs, Rej and MH have single
thread java implementations. The number of threads and other unspecified param-
eters of Stan and Anglican are their default settings. All algorithms run on a 4 core,
3.40GHz PC.

5.6.2 Measurements

In each experiment, all non-observed stochastic random variables of the model form
the query vector Q = [Q1, . . . , Qζ ]. The number of samples taken by a Markov chain

Γ up to a time t is denoted by nt
Γ and the samples are denoted by q(1)

Γ , . . . , q(nt
Γ )

Γ where
q(i)
Γ := [q(i)1,Γ , . . . , q(i)ζ ,Γ ]

1. Mean absolute error vs time

The main measurement is to compute the mean absolute error (MAE)

MAEΓ (t) :=
1
ζ

ζ

∑
j=1

∣∣∣∣∣∣ 1
nt
Γ

nt
Γ

∑
i=1

q(i)j,Γ − q∗j

∣∣∣∣∣∣ (5.28)

vs (wall-clock) time t where q∗ := [q∗1 , . . . q∗ζ ] is the ground truth mean query vector
(that will be discussed shortly).

In each experiment and for each algorithm, γ = 15 Markov chains are run, and for
each time point t, average and standard error of MAE1(t) to MAEγ(t) are plotted.

2. Time to reach error threshold (τ)

This is a single plot that summarizes the overall behavior of each sampler algorithm
w.r.t. the model size: We notice that after some error threshold, the comparative per-

8In BUGS [Lunn et al. 2009], logical nodes cannot be given data or initial values . In PyMC [Patil et al.
2010] deterministic variables have no observed flag. In Stan [Stan Development Team 2014] if you try to
assign an observation value to a deterministic variable, you will encounter an error message: “attempt
to assign variable in wrong block” while Anglican [Wood et al. 2014] throws error “invalid-observe”, etc.

9For example in the momentum model, the observation Ptot = 3 would be approximated with a
normal distribution N (Ptot − 3,σ2

η) where the variance σ2
η is the noise parameter.
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formance of the samplers remains fixed. Therefore, for each sampler, the time to reach
a fixed threshold τ is plotted vs the model size.

If we pick the error threshold too low, many samplers will never reach it. If it is
too high, samplers pass it prior to being comparatively stable. Per experiment, we
manually choose an error threshold that provides a fair compromise between these
two requirements (see Table 5.1).

Ground truth (of mean query vector) (q∗)

In the first experimental model (asymmetric momentum model) the ground truth is
approximated by taking 200,000 samples via rejection sampling (Rej) (as a completely
unbiased sampler). However, this approximation cannot be used in high-dimensional
models since the performance of Rej drastically deteriorates with increasing dimen-
sion. Our remaining experimental models are intentionally chosen to be symmetric as
this enables us to compute the ground truth manually.

5.6.3 Experimental models

Three experimental models are provided: (1) Asymmetric momentum model, (2) sym-
metric multi-object momentum model and (3) Building wiring model.

(Asymmetric) momentum model.

The first model is our running example introduced in Section 5.2 (momentum model).
Using this model, the following experiments are carried out:

1. To study the posterior quality, for different evidence and queries, joint posteriors
are approximated by 10000 samples taken via rejection sampling and plotted in
Figure 5.2.

2. To compare sampling methods (qualitatively), in Figure 5.3, the experiment is re-
peated on the posterior of Figure 5.2-c using the sampling algorithms described
in Section 5.6.1

3. For qualitative MCMC comparison, absolute error vs time is plotted in Figure 5.4).

With increasing the number of space variables, the performance of different sam-
pling algorithms significantly varies. Therefore, in the remaining experiments, com-
parisons take place w.r.t. the variable space dimensionality.

Symmetric (multi-object) momentum model.

Consider a variation of the momentum model in which n objects collide. Let all Vi
and Mi share a same uniform prior,

p(Vi) = p(Mi) = U(0.2, 2.2) for i = 1, . . . , n
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Figure 5.4: Absolute error vs time in the asymmetric momentum model. (The algorithms
correspond sub-figures of Figure 5.3.)

and the constraint be
n

∑
i=1

MiVi = Ptot

The symmetry enables us to compute the posterior ground truth means values man-
ually:

M∗ = V∗ =
√

Ptot/n (5.29)

Conditioned on Ptot = 1.5n, all masses Mi and velocities Vi are queried. By (5.29), all
elements of the ground truth vector q∗ are

√
1.5.

MAE vs. time is depicted in Figures 5.5.a & b for a 10 dimensional and a 30 di-
mensional model, respectively. Time to reach error threshold τ = 0.3 is plotted in
Figure 5.5.c.

The next model deals with a more complicated observed determinism.

Building wiring model

An electrical circuit composed of n, 10Ω± 5% parallel resistor elements Ri with priors

p(Ri) = U(9.5, 10.5) for i = 1, . . . , n

The resistors are inaccessible i.e. the voltage drop and the current associated with
them cannot be measured directly. Given the source voltage V and the total input
current I, the posterior distribution of the element resistances are required. Here the
deterministic constraint is:

1
R1

+ . . . +
1

Rn
= c (5.30)

where c = I
V .

Equations of the form (5.30) are generally referred to as reduced mass relationships
and have applications in the electrical, thermal, hydraulic and mechanical engineering
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Figure 5.5: MCMC Convergence measurements in the symmetric multi-object mo-
mentum model: Absolute error vs time for the collision of (a) 4 and (b) 20 objects; (c)
Time to reach error threshold τ = 0.3.

domains.

Let the observation be
c =

3n
(2× 10.5 + 9.5)

Due to the symmetry of the problem, the posterior ground truth mean is known:

R∗i =
n
c
= 10.166667 for i = 1, . . . , n

MAE vs. time for networks of 10 and 30 resistors are depicted in Figures 5.6.a & b
respectively. Time to reach error threshold τ = 0.045 is plotted in Figure 5.6.c.
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Figure 5.6: MCMC Convergence measurements in the building wiring model: Abso-
lute error vs time for a model with (a) size 4 (i.e. 4 paralleled resistors) and (b) size 30;
(c) Time to reach error threshold τ = 0.045.

5.6.4 Experimental evaluations

Given the experimental results, the questions posed in the beginning of this section
are resolved as follows:

Posterior quality

Plots of Figure 5.2 illustrate the posterior quality of the models studied in this chapter.
They show that even in the presence of a single deterministic constraint, a simple prior
can be transformed into a highly piecewise and multi-modal posterior.
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MCMC comparison

Plots of Figure 5.3 shows that MH and SMC suffer from low effective sample size. Note
that the apparent sparsity of plots 5.3-b, 5.3-e & 5.3-f is due to repeated samples (re-
jected proposals).

The carried out quantitative measurements (Figures 5.4, 5.5 and 5.6) indicate that
in all experimental settings, symbolic Gibbs constantly and significantly performs the
best.

Handling determinism

All quantitative measurements (Figures 5.4, 5.5 and 5.6) indicate that approximating
the determinism by noise leads to poor results.

An interesting result is that in the Building wiring model, even in a dimensional-
ity as low as 10, the Metropolis-Hasting based algorithms (i.e. HM, HMC and SMC)
may not converge to the (manually computed) ground truth or their convergence rate
is extremely low. This happens regardless of the way determinism is handled. A
reason may be as follows: It is widely known that all Metropolis-Hasting-based algo-
rithms are sensitive to parameter tunings. Tuning takes place internally and during
the burn-in period according to some heuristics. Such heuristics may not be valid in
the densities studied in this chapter as they are very different from the bell-shaped
unimodal distributions often studied in the literature so far.

Since Gibbs samplers directly sample from the original distributions (rather than
proposal densities) they can cope well with anomalies and as our results show, always
converge to the ground truth.

5.7 Conclusion

In this chapter we studied the problem of inference on a rich class of models that con-
sists of polynomial piecewise fractional functions (PPFs). To the best of our knowl-
edge, this is the richest class of piecewise functions studied in the literature of graphi-
cal models and probabilistic inference so far. We showed that this family is expressive
enough to remain closed under operations required to transform networks with non-
linear deterministic constraints to purely stochastic PPF models amenable to Gibbs
sampling.

We showed that a large subset of PPF family (namely, PPF*) have symbolic uni-
variate integrals, which together with determinism elimination, enabled the main con-
tribution of this chapter: a fully-automated exact Gibbs sampler called symbolic Gibbs.
In symbolic Gibbs, all univariate CDFs required for Gibbs sampling are computed an-
alytically and prior to the actual sampling process. In this way, symbolic Gibbs saves a
significant amount of computation by avoiding per-sample computations, and shows
dramatically improved performance compared to existing samplers on complex mod-
els motivated by physics and engineering.
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PPF* is an extremely expressive family. For instance, arbitrary distributions can be
approximated by piecewise polynomials which are a subset of PPF*. To approximate
some distributions (most notably heavy-tailed distributions) with piecewise polyno-
mials, a large number of pieces may be required which is not a desirable property.
However, PPF* also includes a large set of fractional functions and is capable of rep-
resenting/approximating heavy-tailed distributions such as Cauchy distribution with
a single piece. The combination of these novel contributions should make probabilis-
tic reasoning applicable to variety of new applications that, to date, have remained
beyond the tractability and accuracy boundaries of existing inference methods.

Nonetheless, the family of piecewise algebraic functions has its own limitations
and shortcomings. The first problem arises in graphical models with a large number
of algebraic potential functions. In such networks, the joint density function is in the
form of a high-degree algebraic function. Due to sharp tangents, such functions are
often quite sensitive to numerical errors.

Another problem emerges in high dimensional models: the number of partitions
required for approximating arbitrary functions via piecewise algebraic forms (up to
fixed accuracy levels) grows exponential in the number of dimensions. Clearly, in
higher dimensions, such an exponential blow up in the number of partitions rapidly
becomes restrictive.

The last restriction is an intrinsic shortcoming of all variations of Gibbs sampling.
The complexity of all such samplers grows at least linear with dimensionality (due
to the number on inner Gibbs steps). Although not as severe as the previous two
problems, this third restriction cannot be neglected.

In the next chapter, we present an alternative sampling-based mechanism for in-
ference on piecewise continuous models. This new sampling method is based on
Hamiltonian Monte Carlo mechanism and therefore is not subject to the above restric-
tions.



Chapter 6

Reflective Hamiltonian Monte Carlo

This chapter proposes a new sampling algorithm that is based on Hamiltonian Monte
Carlo mechanism and can be used to carry out asymptotically unbiased reasoning
on piecewise continuous probabilistic models. Hamiltonian Monte Carlo (HMC) is a
successful approach for sampling from continuous densities. However, it has diffi-
culty simulating Hamiltonian dynamics with non-smooth functions, leading to poor
performance. The algorithm proposed in this chapter is motivated by the behavior
of Hamiltonian dynamics in physical systems like optics. We introduce a modifica-
tion of the Leapfrog discretization of Hamiltonian dynamics on piecewise continuous
energies, where intersections of the trajectory with discontinuities are detected, and
the momentum is reflected or refracted to compensate for the change in energy. We
prove that this method preserves the correct stationary distribution when boundaries
are affine. Experiments show that by reducing the number of rejected samples, this
method improves on traditional HMC.

6.1 Introduction

Our proposed algorithms to tackle the problem of inference on piecewise continuous
models have been based on Gibbs sampling so far. Despite many attractive proper-
ties, Gibbs sampling can only be directly used on integrable models which is a major
restriction.

For instance, symbolic Gibbs sampling cannot be applied to the generalized expo-
nential family of models since the closed-form integration of such functions is often
not possible. Nonetheless, these functions form an important class of functions and
are encountered or utilized in many applications. An important property of this fam-
ily is that in the associated models, one can transform the problem of multiplication
of factors to the summation of energy functions which is less sensitive to numerical
errors.

For such models, Hamiltonian Monte Carlo (HMC) method is a more promising
alternative and a more natural choice. The reason is that HMC directly works with en-
ergies (i.e. minus log of the densities) and therefore is well-matched to the exponential
family. As discussed in Section 2.3.2.8, HMC can also be used on any differentiable
model and even if the closed-from gradients are not available, they can be approxi-
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mated much easier than the integration that Gibbs relies on.

When the probability distribution is smooth, Hamiltonian Monte Carlo (HMC)
uses the gradient to simulate Hamiltonian dynamics and reduce random walk behav-
ior. This often leads to a rapid exploration of the distribution [Homan and Gelman
2014; Brooks et al. 2011]. Because of these desirable properties, HMC has recently be-
come popular in Bayesian statistical inference [Stan Development Team 2014], and is
often the algorithm of choice.

While HMC is motivated by smooth distributions, the inclusion of an acceptance
probability means HMC does asymptotically sample correctly from piecewise distri-
butions1. However, since leapfrog numerical integration of Hamiltonian dynamics
(see [Neal 2011]) relies on the assumption that the corresponding potential energy is
smooth, such cases lead to high rejection probabilities, and poor performance. Hence,
traditional HMC is rarely used for piecewise distributions.

In physical systems that follow Hamiltonian dynamics [Greenwood 1988], a dis-
continuity in the energy can result in two possible behaviors. If the energy decreases
across a discontinuity, or the momentum is large enough to overcome an increase, the
system will cross the boundary with an instantaneous change in momentum, known
as refraction in the context of optics [Buchdahl 1993]. If the change in energy is too
large to be overcome by the momentum, the system will reflect off the boundary, again
with an instantaneous change in momentum.

Recently, Pakman and Paninski [Pakman and Paninski 2014; Pakman and Panin-
ski 2013] proposed methods for HMC-based sampling from piecewise Gaussian dis-
tributions by exactly solving the Hamiltonian equations, and accounting for what we
refer to as refraction and reflection above. However, since Hamiltonian equations of
motion can rarely be solved exactly, the applications of this method are restricted to
distributions whose log-density is piecewise quadratic.

In this chapter, we generalize this work to arbitrary piecewise continuous distri-
butions, where each region is a polytope, i.e. is determined by a set of affine bound-
aries. We introduce a modification to the leapfrog numerical simulation of Hamilto-
nian dynamics, called Reflective Hamiltonian Monte Carlo (RHMC), by incorporating
reflection and refraction via detecting the first intersection of a linear trajectory with
a boundary. We prove that our method has the correct stationary distribution, where
the main technical difficulty is proving volume preservation of our dynamics to es-
tablish detailed balance. Numerical experiments confirm that our method is more
efficient than baseline HMC, due to having fewer rejected proposal trajectories, par-
ticularly in high dimensions. As mentioned, the main advantage of this method over
[Pakman and Paninski 2014] and [Pakman and Paninski 2013] is that it can be applied
to arbitrary piecewise densities, without the need for a closed-form solution to the
Hamiltonian dynamics, greatly increasing the scope of applicability.

1As in previous chapters, we assume the total measure of the non-differentiable points is zero so that,
with probability one, none is ever encountered
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6.2 Exact Hamiltonian Dynamics

Throughout this chapter, probability density functions are denoted by the capital let-
ter P since the small letter p is reserved for denoting momentums as we will see shortly.
Consider a distribution

P(q) ∝ exp(−U(q))

over Rn, where U is the potential energy. Recall from Section 2.3.2.8 that HMC [Neal
2011] is based on considering a joint distribution on momentum and position space

P(q, p) ∝ exp(−H(q, p))

where
H(q, p) = U(q) + K(p)

and K is a quadratic, meaning that

P(p) ∝ exp(−K(p))

is a normal distribution. If one could exactly simulate the dynamics, HMC would
proceed by

1. iteratively sampling p ∼ P(p),

2. simulating the following Hamiltonian dynamics equations (6.1) and (6.2)

dqi

dt
=

∂H
∂pi

= pi (6.1)

dpi

dt
= −∂H

∂qi
= −∂U

∂qi
(6.2)

for some period of time ε, and

3. reversing the sign of the final value p. (Only needed for the proof of correct-
ness, since this will be immediately discarded at the start of the next iteration in
practice.)

It can be shown that steps (1) and (2-3) both leave the distribution P(p, q) invariant
[Neal 2011]. Therefore, so does a Markov chain that alternates between the two steps.
Hence, the dynamics have P(p, q) as a stationary distribution. Of course, the above
differential equations are not well-defined when U has discontinuities, and are typi-
cally difficult to solve in closed-form.
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Figure 6.1: Example trajectories of baseline and reflective HMC. (a) Contours of the target distribution
in two dimensions, as defined in Eq. 6.20. (b) Trajectories of the rejected (red crosses) and accepted (blue
dots) proposals using baseline HMC. (c) The same with RHMC. Both use leapfrog parameters L = 25
and ε = 0.1 In RHMC, the trajectory reflects or refracts on the boundaries of the internal and external
polytope boundaries and thus has far fewer rejected samples than HMC, leading to faster mixing in
practice. (More examples in supplementary material.)

6.3 Reflection and Refraction with Exact Hamiltonian Dynam-
ics

Take a potential function U(q) which is differentiable in all points except at some
boundaries of partitions. Suppose that, when simulating the Hamiltonian dynamics,
(q, p) evolves over time as in the above equations whenever these equations are dif-
ferentiable. However, when the state reaches a boundary, decompose the momentum
vector p into a component p⊥ perpendicular to the boundary and a component p‖
parallel to the boundary.

p := p⊥ + p‖

Let ∆U be the (signed) difference in potential energy on the two sides of the disconti-
nuity. If

‖p⊥‖2 > 2∆U

then p⊥ is instantaneously replaced by a new vector p′⊥ where

p′⊥ :=
√
‖p⊥‖2 − 2∆U · p⊥

‖p⊥‖

That is, the discontinuity is passed, but the momentum is changed in the direction
perpendicular to the boundary (refraction). (If ∆U is positive, the momentum will
decrease, and if it is negative, the momentum will increase.) On the other hand, if

‖p⊥‖2 ≤ 2∆U

then p⊥ is instantaneously replaced by −p⊥. That is, if the particle’s momentum is
insufficient to climb the potential boundary, it bounces back by reversing the momen-
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tum component which is perpendicular to the boundary.
Pakman and Paninski [Pakman and Paninski 2014; Pakman and Paninski 2013]

present an algorithm to exactly solve these dynamics for quadratic U. However, for
non-quadratic U, the Hamiltonian dynamics rarely have a closed-form solution, and
one must resort to numerical integration, the most successful method for which is
known as the leapfrog dynamics.

6.4 Reflection and Refraction with Leapfrog Dynamics

Informally, HMC with leapfrog dynamics iterates three steps.

1. Sample p ∼ P(p).

2. Perform leapfrog simulation, by discretizing the Hamiltonian equations into L
steps using some small step-size ε. Here, one interleaves a position step

q← q +εp

between two half momentum steps

p← p−ε∇U(q)/2

3. Reverse the sign of p.

If (q, p) is the starting point of the leapfrog dynamics, and (q′, p′) is the final point,
accept the move with probability

min(1, exp(H(p, q)− H(p′, q′)))

See Algorithm 13.
It can be shown that this baseline HMC method has detailed balance with re-

spect to P(p), even if U(q) is discontinuous. However, discontinuities mean that
large changes in the Hamiltonian may occur, meaning many steps can be rejected.
We propose a modification of the dynamics, namely, reflective Hamiltonian Monte Carlo
(RHMC), which is also shown in Algorithm 13.

The only modification is applied to the position steps:
In RHMC, the first intersection of the trajectory with the boundaries of the polytope
that contains q must be detected [Pakman and Paninski 2014; Pakman and Paninski
2013]. The position step is only taken up to this boundary, and reflection/refraction
occurs, depending on the momentum and change of energy at the boundary. This
process continues until the entire amount of time ε has been simulated. Note that if
there is no boundary in the trajectory to time ε, this is equivalent to baseline HMC.
Also note that several boundaries might be visited in one position step.

As with baseline HMC, there are two alternating steps, namely drawing a new
momentum variable p from

P(p) ∝ exp(−K(p))
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Algorithm 13: BASELINE & REFLECTIVE HMC ALGORITHMS

input : q0, current sample;
U, potential function;
L, number of leapfrog steps;
ε, leapfrog step size

output: next sample

1 begin
2 q← q0; p ∼ N (0, 1)
3 H0 ← ‖p‖2/2 + U(q)
4 for l = 1 to L do
5 # Half-step evolution of momentum:
6 p← p−ε∇U(q)/2

7 # Full-step evolution of position:
8 if BASELINEHMC then
9 q← q +εp

10 else
11 # (i.e. if REFLECTIVEHMC):
12 t0 ← 0
13 while

(
〈x, tx, ∆U,φ〉 ← FIRSTDISCONTINUITY(q, p,ε− t0, U)

)
6= ∅

do
14 q← x
15 t0 ← t0 + tx
16 〈p⊥, p‖〉 = DECOMPOSE(p,φ) # perpendicular/ parallel to boundary

planeφ
17 if ‖p⊥‖2 > 2∆U then
18 p⊥ ←

√
‖p⊥‖2 − 2∆U · p⊥

‖p⊥‖
# refraction

19 else
20 p⊥ ← −p⊥ # reflection
21 p← p⊥ + p‖
22 q← q + (ε− t0)p

23 # Half-step evolution of momentum:
24 p← p−ε∇U(q)/2
25 p← −p # not required in practice; just for the proof of reversibility
26 H ← ‖p‖2/2 + U(q); ∆H ← H − H0

27 if s ∼ U (0, 1) < e−∆H return q else return q0

note : FIRSTDISCONTINUITY(·) returns x, the position of the first intersection
of a boundary plain with line segment [q, q + (ε− t0)p]; tx, the time it
is visited; ∆U = U(x+) - U(x−) andφ, the visited partition boundary. If
no such point exists, ∅ is returned.
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and proposing a move
(p, q)→ (p′, q′)

and accepting or rejecting it with a probability determined by a Metropolis-Hastings
ratio. We can show that both of these steps leave the joint distribution P invariant,
and hence a Markov chain that also alternates between these steps will also leave P
invariant.

As it is easy to see, drawing p from P(p) will leave P(q, p) invariant, we con-
centrate on the second step i.e. where a move is proposed according to the piecewise
leapfrog dynamics shown in Algorithm 13.

Firstly, it is clear that these dynamics are time-reversible, meaning that if the sim-
ulation takes state (q, p) to (q′, p′) it will also take state (q′, p′) to (q, p) (as a matter
of fact, the system oscillates between these two states since the sign of momentum is
reversed in step 3).

Secondly, we will show that these dynamics are volume preserving. Formally, if
D denotes the leapfrog dynamics (i.e. the transformation mapping (q, p) to (q′, p′)),
we will show that the absolute value of the determinant of the Jacobian of D is one.

These two properties together show that the probability density of proposing a
move from (q, p) to (q′, p′) is the same of that proposing a move from (q′, p′) to
(q, p) (refer to [Neal 2011]). Thus, if the move

(q, p)→ (q′, p′)

is accepted according to the standard Metropolis-Hastings ratio,

R
(
(q, p)→ (q′, p′)

)
= min(1, exp(H(q, p)− H(q′, p′))

then detailed balance will be satisfied. To see this, let Q denote the proposal distri-
bution, Then, the usual proof of correctness for Metropolis-Hastings applies, namely
that

P(q, p)Q ((q, p)→ (q′, p′)) R ((q, p)→ (q′, p′))
P(q′, p′)Q((q′, p′)→ (q, p))R((q′, p′)→ (q, p))

=
P(q, p)min(1, exp(H(q, p)− H(q′, p′))

P(q′, p′)min(1, exp(H(q′, p′)− H(q, p))
= 1. (6.3)

(The final equality is easy to establish, considering the cases where

H(q, p) ≥ H(q′, p′)

and
H(q′, p′) ≤ H(q, p)

separately.) This means that detailed balance holds, and so P is a stationary distribu-
tion.
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q1 = c

x

q

p

p′
q′

Figure 6.2: Transformation T : 〈q, p〉 → 〈q′, p′〉 as described by Lemma 1 (Reflection).

The major difference in the analysis of RHMC, relative to traditional HMC is that
showing conservation of volume is more difficult. With standard HMC and leapfrog
steps, volume conservation is easy to show by observing that each part of a leapfrog
step is a shear transformation. This is not the case with RHMC, and so we must
resort to a full analysis of the determinant of the Jacobian, as explored in the following
section.

6.5 Volume Conservation

In the total leapfrog full-step time ε, zero, one or several reflections/refractions may
occur. To prove that in the total period ε the volume is conserved, our strategy is as
follows: We divide ε into arbitrary smaller periods,

ε = τ1 + τ2 + · · ·

such that in each period τi, at most one reflection or refraction occurs. If in a τi period
no reflection/refraction happens, then the transformation is shear which conserved
the volume. The following two lemmas also show that in case a reflection or refraction
occurs, the volume is still preserved. As a result we conclude that in total time ε, the
volume is conserved as well.

6.5.1 Refraction

In our first result, we assume without loss of generality, that there is a boundary lo-
cated at the hyperplane q1 = c. This Lemma shows that, in the refractive case, volume
is conserved. The setting is visualized in Figure 6.2.

Lemma 1 (Volume conservation visa a single refraction). Let T : 〈q, p〉 → 〈q′, p′〉
be a transformation in Rn that takes a unit mass located at q := (q1, . . . , qn) and moves it
with constant momentum p := (p1, . . . , pn) till it reaches a plane q1 = c (at some point
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x := (c, x2, . . . , xn) where c is a constant). Subsequently the momentum is changed to

p′ =
(√

p2
1 − 2∆U(x), p2, . . . , pn

)
where ∆U(·) is a function of x such that p2

1 > 2∆U(x) The move is carried on for the total
time period τ till it ends in q′ := (q′1, . . . , q′n) T satisfies the volume preservation property.

Proof. For i > 1, the momentum is not affected by the collision,

∀i > 1, p′i = pi

therefore,
∀i > 1, q′i = qi + τ · pi

As a result,

∀ j ∈ {2, . . . , n} s.t. j 6= i,
∂q′i
∂q j

=
∂q′i
∂p j

=
∂p′i
∂q j

=
∂p′i
∂p j

= 0. (6.4)

Therefore, if we explicitly write out the Jacobian determinant of T and apply (6.4), it
is

|J| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂q′1
∂q1

∂q′1
∂p1

∂q′1
∂q2

· · · ∂q′1
∂pn−1

∂q′1
∂qn

∂q′1
∂pn

∂p′1
∂q1

∂p′1
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· · · ∂p′1
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∂pn
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∂p1

∂q′2
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· · · ∂q′2
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∂q′2
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∂pn

...
. . .

...
...
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∂q1
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∂p1

∂p′n−1
∂q2

· · · ∂p′n−1
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∂qn

∂p′n−1
∂pn

∂q′n
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0 0 0 · · · 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(6.5)

Now, using standard properties of the determinant, we have that

|J| =

∣∣∣∣∣∣
∂q′1
∂q1

∂q′1
∂p1

∂p′1
∂q1

∂p′1
∂p1

∣∣∣∣∣∣ =
∣∣∣∣∂q′1
∂q1

∂p′1
∂p1
− ∂p′1

∂q1

∂q′1
∂p1

∣∣∣∣ (6.6)
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We will now explicitly calculate these four derivatives. Due to the significance of
the result, we carry out the computations in detail. Let t1 be the time to reach the
plane q1 = c. That is

t1 :=
c− q1

p1
(6.7)

The collision point x is a determined from the initial position and momentum as well
as the time t1 where the collision occurs:

x = q + t1 · p (6.8)

Let t2 be the period between reaching x and the last point q′.

t2 := τ − t1 = τ +
q1 − c

p1
(6.9)

From (6.9) it immediately follows that,

∂t2

∂q1
=

1
p1

(6.10)

As it can be seen in Figure 6.2,

q′1 = c + p′1 · t2 (6.11)

By equations (6.11) and (6.10):

∂q′1
∂q1

=
∂q′1
∂p′1
· ∂p′1

∂q1
+

∂q′1
∂t2
· ∂t2

∂q1
= t2 ·

∂p′1
∂q1

+ p′1 ·
1
p1

(6.12)

Similarly, by using equations (6.11) and (6.9):

∂q′1
∂p1

=
∂q′1
∂p′1
· ∂p′1

∂p1
+

∂q′1
∂t2
· ∂t2

∂p1
= t2 ·

∂p′1
∂p1

+ p′1 ·
c− q1

p2
1

(6.13)

On the other hand, remember that by definition

p′1 :=
√

p2
1 − 2∆U(x) (6.14)

therefore,

∂p′1
∂p1

(6.14)
=

1

2
√

p2
1 − 2∆U(x)

·
∂
(

p2
1 − 2∆U(x)

)
∂p1

=
p1 − ∂∆U(x)/∂p1

p′1
(6.15)
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and

∂p′1
∂q1

=
1

2
√

p2
1 − 2∆U(x)

·
∂
(

p2
1 − 2∆U(x)

)
∂q1

=
1
p′1
· −∂∆U(x)

∂q1
(6.16)

Using equations (6.7) and (6.8) we can compute the partial derivative of the collision
point x with respect to p1 (i.e. the first element of the initial momentum) as follows:

∂x
∂p1

=
∂

(
q + c−q1

p1
p
)

∂p1
=

∂q
∂p1

+ (c− q1) ·
∂(p/p1)

∂p1

= (c− q1)
−1
p2

1
· (0, p2, p3, . . . , pn) (6.17)

Similarly, we can compute the partial derivative of x with respect to the first element
of the initial position vector:

∂x
∂q1

=
∂q
∂q1

+
p
p1
· ∂(c− q1)

∂q1
=

q
q1
− p

p1

= (1, 0, . . . , 0)− (1,
p2

p1
, . . . ,

pn

p1
) =
−1
p1

(0, p2, . . . , pn) (6.18)

Now, we are able to compute the total Jacobian by substituting the appropriate terms
into equation (6.6):

|J| (6.5)
=

∂q′1
∂q1
· ∂p′1

∂p1
− ∂q′1

∂p1
· ∂p′1

∂q1

(6.12 & 6.13)
=

(
t2

∂p′1
∂q1

+
p′1
p1

)
· ∂p′1

∂p1
−
(

t2
∂p′1
∂p1

+ p′1
c− q1

p2
1

)
· ∂p′1

∂q1

=
p′1
p1

(
∂p′1
∂p1

+
q1 − c

p1
· ∂p′1

∂q1

)
(6.15 & 6.16)

=
1
p1

(
p1 −

∂∆U(x)
∂p1

− q1 − c
p1
· ∂∆U(x)

∂q1

)
= 1− 1

p1

(
∂∆U(x)

∂x
· ∂x

∂p1
+

q1 − c
p1
· ∂∆U(x)

∂x
· ∂x

∂q1

)
(6.17 & 6.18)

= 1− 1
p1
· ∂∆U(x)

∂x

(
q1 − c

p2
1
· (0, p2, p3, . . . , pn)

+
q1 − c

p1
· −1

p1
(0, p2, . . . , pn)

)
= 1.

6.5.2 Reflection

Now, we turn to the reflective case, and again show that volume is conserved. Again,
we assume without loss of generality that there is a boundary located at the hyper-
plane q1 = c. The setting is visualized in Figure 6.3.
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Lemma 2. [Volume conservation visa a single reflection] Let

T : 〈q, p〉 → 〈q′, p′〉

be a transformation in Rn that takes a unit mass located at

q := (q1, . . . , qn)

and moves it with the constant momentum

p := (p1, . . . , pn)

till it reaches a plane q1 = c (at some point x := (c, x2, . . . , xn) where c is a constant).
Subsequently the mass is bounced back (reflected) with momentum

p′ = (−p1, p2, . . . , pn)

The move is carried on for a total time period τ till it ends in q′. For all n ∈ N, T satisfies the
volume preservation property.

Proof. Similar to Lemma 1, for i > 1, q′i = qi + τ · pi and p′i = pi. Therefore

∀ j ∈ {2, . . . , n} s.t. j 6= i,
∂q′i
∂q j

=
∂q′i
∂p j

=
∂p′i
∂q j

=
∂p′i
∂p j

= 0

Consequently, by equation (6.5), and since p′1 = −p1,

|J| =

∣∣∣∣∣∣
∂q′1
∂q1

∂q′1
∂p1

∂p′1
∂q1

∂p′1
∂p1

∣∣∣∣∣∣ =
∣∣∣∣∣ ∂q′1

∂q1

∂q′1
∂p1

0 −1

∣∣∣∣∣ = −∂q′1
∂q1

(6.19)

As before, let t1 be the time to reach x and t2 be the period between reaching x and the
last point q′. That is,

t1 :=
c− q1

p1

and
t2 := τ − t1

It follows that q′1 with the following formula

q′1 := c + p′1 · t2

is equal to 2c− τ p1 − q1. Hence, |J| = 1.

6.5.3 Reflective Leapfrog Dynamics

Using lemmas 1 and 2, we can easily prove that in the reflective HMC algorithm for
the total leapfrog period ε, the volume is preserved.
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q1 = c

xq
p

p’q′

Figure 6.3: Transformation T : 〈q, p〉 → 〈q′, p′〉 as described by Lemma 2 (Reflection).

Theorem 2. In RHMC (Algorithm 13) for sampling from a continuous and piecewise dis-
tribution P which has affine partitioning boundaries, leapfrog simulation preserves volume in
(q, p) space.

Proof. We split the algorithm into several atomic transformations Ti. Each transforma-
tion is either (a) a momentum step, (b) a full position step with no reflection/refraction
or (c) a full or partial position step where exactly one reflection or refraction occurs.

To prove that the total algorithm preserves volume, it is sufficient to show that the
volume is preserved under each Ti (i.e. |JTi(q, p)| = 1) since:

|JT1oT2o···oTm | = |JT1 | · |JT2 | · · · |JTm |

Transformations of kind (a) and (b) are shear mappings and therefore they preserve
the volume [Neal 2011]. Now consider a (full or partial) position step where a single
refraction occurs. If the reflective plane is in the form q1 = c, by lemma 1, the volume
preservation property holds. Otherwise, as long as the reflective plane is affine, via
a rotation of basis vectors, the problem is reduced to the former case. Since volume
is conserved under rotation, in this case the volume is also conserved. With similar
reasoning, by lemma 2, reflection on a affine reflective boundary preserves volume.
Thus, since all component transformations of RHMC leapfrog simulation preserve
volume, the proof is complete.

Along with the fact that the leapfrog dynamics are time-reversible, this shows that
the algorithm satisfies detailed balance, and so has the correct stationary distribution.

6.6 Experiment

Compared to baseline HMC, we expect that RHMC will simulate Hamiltonian dy-
namics more accurately and therefore leads to fewer rejected samples. On the other
hand, this comes at the expense of slower leapfrog position steps since intersections,
reflections and refractions must be computed. To test the trade off, we compare the
RHMC to baseline HMC [Neal 2011] and tuned Metropolis-Hastings (MH) with a sim-
ple isotropic Normal proposal distribution. MH is automatically tuned after [Roberts
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Figure 6.4: Error (worst mean absolute error per dimension) versus (a-c) iterations and
(e-f) time (ms). Tuned.HM is Metropolis Hastings with a tuned isotropic Gaussian
proposal distribution. (Many more examples in supplementary material.)

et al. 1997] by testing 100 equidistant proposal variances in interval (0, 1] and accept-
ing a variance for which the acceptance rate is closest to 0.24. In the baseline HMC
and RHMC the number of leapfrog steps L and the leapfrog step size ε are chosen to
be 100 and 0.1 respectively.
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The comparison takes place on a heavy tail piecewise model with (non-normalized)
negative log probability

U(q) =


√

q>A q if ‖q‖∞ ≤ 3

1 +
√

q>A q if 3 < ‖q‖∞ ≤ 6

+∞, otherwise

(6.20)

where A is a positive definite matrix. We carry out the experiment on three choices of
(position space) dimensionalites, n = 2, 10 and 50.

Due to the symmetry of the model, the ground truth expected value of q is known
to be 0. Therefore, the absolute error of the expected value (estimated by a chain
q(1), . . . , q(k) of MCMC samples) in each dimension d = 1, . . . , n is the absolute value
of the mean of d-th element of the sample vectors. The worst mean absolute error
(WMAE) over all dimensions is taken as the error measurement of the chain.

WMAE
(

q(1), . . . , q(k)
)
=

1
k

max
d=1,...n

∣∣∣∣∣ k

∑
s=1

qd
s

∣∣∣∣∣ (6.21)

For each algorithm, 20 Markov chains are run and the mean WMAE and 99% con-
fidence intervals (as error bars) versus the number of iterations (i.e. Markov chain
sizes) as well as time (milliseconds) are depicted in Figure 6.4. All algorithms are
implemented in java and run on a single thread of a 3.40GHz CPU.

For each of the 20 repetitions, some random starting point is chosen uniformly and
used for all three of the algorithms. We use a diagonal matrix for A where, for each
repetition, each entry on the main diagonal is either exp(−5) or exp(5) with equal
probabilities.

As the results show, even in low dimensions, the extra cost of the position step is
more or less compensated by its higher effective sample size but as the dimensionality
increases, the RHMC significantly outperforms both baseline HMC and tuned MH.

6.6.1 Sensitivity to parameter tuning

To study the effect of tuning on the baseline and reflective HMC algorithms, in this
section we repeat the previous experiment using different leap frog parameter config-
urations. Namely, in the following figures error vs iteration and error vs time plots, all
combinations of L ∈ {20, 50, 200} and ε ∈ {0.05, 0.1, 0.2, 0.4} are tested on 10 and 50
dimensional models. The worst mean absolute error (WMAE) over all dimensions is
taken as the error measurement of a Markov chain. Each experiment is repeated over
10 Markov chains and the means and standard errors are depicted.

These figures show that

1. The proposed reflective HMC (RHMC) remains superior to the baseline HMC
over a large range of L and ε and in no setting it performs worse.

2. Compared to the basic HMC, the performance of reflective HMC is less sensitive



130 Reflective Hamiltonian Monte Carlo

10
0

10
1

10
2

10
3

10
4

0

1

2

3

4

5

6

Iteration (dim=10, L=20, ε =0.05)

Er
ro

r

 

 
Baseline.HMC
Tuned.MH
Reflective.HMC

10
1

10
2

10
3

0

1

2

3

4

5

6

Time (dim=10, L=20, ε =0.05)

Er
ro

r

 

 
Baseline.HMC
Tuned.MH
Reflective.HMC

(b) (e)

10
0

10
1

10
2

10
3

10
4

0

1

2

3

4

5

6

Iteration (dim=50, L=20, ε =0.05)

Er
ro

r

 

 

Baseline.HMC
Tuned.MH
Reflective.HMC

10
1

10
2

10
3

10
4

0

1

2

3

4

5

6

Time (dim=50, L=20, ε =0.05)

Er
ro

r

 

 

Baseline.HMC
Tuned.MH
Reflective.HMC

(c) (f)

Figure 6.5: WMAE vs. iterations (left) and time (right) (ms) for leapfrog parameters L = 20, ε = 0.05.

to parameter tuning.

3. Regardless of the tuning, in high dimensional models, reflective HMC performs
significantly better than the basic HMC and tuned Metropolis-Hastings.

6.6.2 The rate of rejections, reflections and refractions

In this section, for a range of parameter tunings and model dimensions, the proposal
rejection rate of the basic and reflective HMC algorithms as well as the number of
reflections and refractions of the latter sampler are depicted in Tables 6.1 to 6.3. In all
settings, the rates are averaged over 10 Markov chains.

An interesting observation is that in high dimensions (as in Table 6.3), the number
of refractions is significantly less than reflections. This is due to the fact that the stud-
ied models consist of two positive-probability (hyper-cubic) partitions one of which is
inside the other. In high dimensions, the internal hyper-cube is rarely sampled since
most of the mass is placed near the outer surface of the external one. Based on this
observation, we predict that in general, due to the effect of reflection, the performance
of our proposed method on high dimensional truncated/finite-support model should
be remarkable. The reason is that in such high-dimensional models, the density mass
is concentrated near the manifolds that mark the external surfaces of the density func-
tion and the reflections prevent the leapfrog mechanism to enter the zero-probability
ambient space.
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Figure 6.6: WMAE vs. iterations (left) and time (right) (ms) for leapfrog parameters L = 20, ε = 0.1.
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Figure 6.7: WMAE vs. iterations (left) and time (right) (ms) for leapfrog parameters L = 20, ε = 0.2.
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Figure 6.8: WMAE vs. iterations (left) and time (right) (ms) for leapfrog parameters L = 50, ε = 0.05.
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Figure 6.9: WMAE vs. iterations (left) and time (right) (ms) for leapfrog parameters L = 50, ε = 0.1.
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Figure 6.10: WMAE vs. iterations (left) and time (right) (ms) for leapfrog parameters L = 50, ε = 0.2.
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Figure 6.11: WMAE vs. iterations (left) and time (right) (ms) for leapfrog parameters L = 200, ε =
0.05.
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Figure 6.12: WMAE vs. iterations (left) and time (right) (ms) for leapfrog parameters L = 200,ε = 0.1.
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Figure 6.13: WMAE vs. iterations (left) and time (right) (ms) for leapfrog parameters L = 200,ε = 0.2.
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Table 6.1: Rate of rejections/reflections and refractions for sampling 10,000 samples
using baseline/reflective HMC methods. Model dimensionality = 2.

ε

L Alg. 0.05 0.1 0.2 0.4

20

HMC no. reject: 1966.8 no. reject: 5120.1 no. reject: 7673.1 no. reject: 9564.6

RHMC
no. reject: 1307.7 no. reject: 4791.3 no. reject: 6055.1 no. reject: 8866.2
no. reflect: 785.1 no. reflect: 931.9 no. reflect: 3758.6 no. reflect: 13977.5
no. refract: 556.4 no. refract: 734.3 no. refract: 2603.7 no. refract: 36627.5

50

HMC no. reject: 3587.7 no. reject: 6696.4 no. reject: 9195.2 no. reject: 9510.6

RHMC
no. reject: 2012.2 no. reject: 4510.8 no. reject: 8175.9 no. reject: 7958.5
no. reflect: 2129.6 no. reflect: 4685.6 no. reflect: 8018.5 no. reflect: 59906.3
no. refract: 1567.7 no. refract: 3165.8 no. refract: 16627.1 no. refract: 121706.7

100

HMC no. reject: 5288.0 no. reject: 8264.3 no. reject: 8904.9 no. reject: 9416.3

RHMC
no. reject: 3152.5 no. reject: 5495.8 no. reject: 6510.4 no. reject: 6998.3
no. reflect: 4029.0 no. reflect: 10549.3 no. reflect: 20825.6 no. reflect: 172305.0
no. refract: 2920.2 no. refract: 7266.3 no. refract: 51209.3 no. refract: 261964.0

200

HMC no. reject: 7100.1 no. reject: 8421.4 no. reject: 9221.1 no. reject: 9426.0

RHMC
no. reject: 2366.9 no. reject: 6450.9 no. reject: 6679.2 no. reject: 7047.6
no. reflect: 11509.1 no. reflect: 18628.0 no. reflect: 66031.6 no. reflect: 498257.6
no. refract: 7693.9 no. refract: 22783.0 no. refract: 143159.7 no. refract: 645459.2

Table 6.2: Rate of rejections/reflections and refractions for sampling 10,000 samples
using baseline/reflective HMC methods. Model dimensionality = 10.

ε

L Alg. 0.05 0.1 0.2 0.4

20

HMC no. reject: 2754.0 no. reject: 5472.9 no. reject: 8873.8 no. reject: 9946.3

RHMC
no. reject: 130.7 no. reject: 799.7 no. reject: 4260.2 no. reject: 9365.8
no. reflect: 3089.3 no. reflect: 6864.7 no. reflect: 15013.6 no. reflect: 32340.3
no. refract: 554.4 no. refract: 878.3 no. refract: 1348.5 no. refract: 5057.8

50

HMC no. reject: 5738.4 no. reject: 8337.8 no. reject: 9629.4 no. reject: 9987.0

RHMC
no. reject: 141.9 no. reject: 680.2 no. reject: 4921.8 no. reject: 9497.0
no. reflect: 8035.2 no. reflect: 15536.1 no. reflect: 36844.7 no. reflect: 113852.2
no. refract: 1315.6 no. refract: 2731.2 no. refract: 3553.6 no. refract: 14880.1

100

HMC no. reject: 8139.5 no. reject: 9771.6 no. reject: 9968.1 no. reject: 9999.7

RHMC
no. reject: 157.2 no. reject: 960.0 no. reject: 4359.8 no. reject: 9640.1
no. reflect: 16291.1 no. reflect: 36164.2 no. reflect: 67230.7 no. reflect: 321873.9
no. refract: 2307.4 no. refract: 4260.1 no. refract: 11126.0 no. refract: 24149.7

200

HMC no. reject: 9600.1 no. reject: 9987.0 no. reject: 9999.9 no. reject: 10000.0

RHMC
no. reject: 156.7 no. reject: 744.1 no. reject: 5399.3 no. reject: 9662.6
no. reflect: 32738.1 no. reflect: 64447.1 no. reflect: 168753.9 no. reflect: 1022839.6
no. refract: 5022.2 no. refract: 9978.9 no. refract: 14639.0 no. refract: 36450.5
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Table 6.3: Rate of rejections/reflections and refractions for sampling 10,000 samples
using baseline/reflective HMC methods. Model dimensionality = 50.

ε

L Alg. 0.05 0.1 0.2 0.4

20

HMC no. reject: 8301.4 no. reject: 9719.0 no. reject: 9999.5 no. reject: 10000.0

RHMC
no. reject: 64.2 no. reject: 289.8 no. reject: 988.0 no. reject: 4197.3
no. reflect: 17257.4 no. reflect: 33841.4 no. reflect: 66524.4 no. reflect: 141453.9
no. refract: 0.0 no. refract: 0.0 no. refract: 0.2 no. refract: 0.0

50

HMC no. reject: 9869.9 no. reject: 10000.0 no. reject: 10000.0 no. reject: 10000.0

RHMC
no. reject: 59.9 no. reject: 233.8 no. reject: 878.4 no. reject: 3921.5
no. reflect: 40732.3 no. reflect: 82537.0 no. reflect: 160209.2 no. reflect: 331565.0
no. refract: 0.0 no. refract: 0.0 no. refract: 0.0 no. refract: 0.0

100

HMC no. reject: 9998.8 no. reject: 10000.0 no. reject: 10000.0 no. reject: 10000.0

RHMC
no. reject: 56.9 no. reject: 215.1 no. reject: 960.5 no. reject: 3899.6
no. reflect: 85937.0 no. reflect: 157553.7 no. reflect: 356408.4 no. reflect: 665330.2
no. refract: 0.4 no. refract: 0.2 no. refract: 0.0 no. refract: 0.0

200

HMC no. reject: 10000.0 no. reject: 10000.0 no. reject: 10000.0 no. reject: 10000.0

RHMC
no. reject: 60.2 no. reject: 229.8 no. reject: 888.9 no. reject: 3911.3
no. reflect: 157838.8 no. reflect: 335667.9 no. reflect: 667757.6 no. reflect: 1325778.9
no. refract: 0.2 no. refract: 0.0 no. refract: 0.2 no. refract: 1.6

6.7 Conclusion

The samplers proposed in Chapters 4 and 5 were suitable for piecewise algebraic mod-
els. In this chapter, however, we targeted another important family of models and
designed a sampling mechanism for density functions that are naturally in the form
of piecewise exponentials.

We presented a modification of the leapfrog dynamics for Hamiltonian Monte
Carlo for piecewise smooth energy functions, inspired by physical systems. Though
traditional Hamiltonian Monte Carlo can in principle be used on such functions, the
fact that the Hamiltonian will often be dramatically changed by the dynamics can re-
sult in a very low acceptance ratio, particularly in high dimensions. By better preserv-
ing the Hamiltonian, reflective Hamiltonian Monte Carlo (RHMC) accepts more moves
and thus has a higher effective sample size, leading to much more efficient probabilis-
tic inference.

Our empirical results show that compared to the baseline HMC, our proposed
method is much less sensitive to parameter tuning (see Section 6.6.1) and particularly
in high dimensional truncated models, its performance is overwhelmingly better (see
Section 6.6.2).

Nonetheless, like any other inference technique, RHMC has its own limitation.
Most notably, to use RHMC, one must be able to detect the first intersection of a posi-
tion trajectory with polytope boundaries which is not always easy and can be costly.
Another issue is that so far, the volume preservation of RHMC (Theorem 2) is only
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proved for the case the density boundaries are affine (i.e. each region is a polytope).
Clearly, this is a theoretical restriction. We speculate that the proof of correctness can
be generalized to the case where the boundaries are nonlinear. The verification or
refutation of this speculation can be a future direction of research.
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Chapter 7

Conclusion

7.1 Summary of contributions

In this thesis we investigated the problem of sampling-based inference on piecewise
continuous graphical models and proposed three MCMC methods that target differ-
ent application ranges (see Table 7.1). The summary of our contribution is as follows:

• A major problem for probabilistic inference in piecewise graphical models is that
in case a model consists of a large number of piecewise factors (e.g. Bayesian in-
ference with several data points and piecewise likelihood functions), the number
of pieces in the joint density can grow exponentially in the number of piecewise
factors, leading to scenarios where traditional inference tools face severe difficul-
ties. In Chapter 4, we showed that this issue can be resolved via augmenting the
model with auxiliary discrete and deterministic random variables each of which
indicates the activated partition in each piecewise factor. By utilizing a particular
blocked Gibbs sampler we provided an inference mechanism with linear (rather
than exponential) growth in the number of piecewise factors.

• In Chapter 5, we proposed another Gibbs sampling based inference tool (namely,
symbolic Gibbs sampling) and tackled the problem of inference on piecewise mod-
els from another point of view. That is, instead of concentrating on piecewise
densities that can be factorized into a large number of potential functions (that
was our approach in Chapter 4) we focused on effective inference within a par-
ticular family of piecewise models, namely polynomial-piecewise fractional func-
tions (PPFs), that is, fractional piecewise models with polynomial partitioning
restrictions. We showed that on a large subset of this expressive family of func-
tions, Gibbs sampling can be performed at least an order of magnitude faster
than its baseline counterpart. The key observation is that in PPF models, most
costly computations required for Gibbs sampling can be accomplished analyt-
ically and prior to the sampling process rather than per sample. By leverag-
ing this observation, symbolic Gibbs alleviates a significant computational over-
head. Our experimental results show that symbolic Gibbs sampling can effec-
tively carry out inference on models that can hardly be handled by means of the
existing sampling tools.

139
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Table 7.1: Sampling techniques introduced in Chapters 4 to 6, the restrictions of piece-
wise models to which they can be applied as well as application domains in which
they perform best.

Algorithm
Piecewise model

Application
Sub-functions Boundaries

Augmented Gibbs Polynomial Linear/quadratic
Highly factorized models

with piecewise factors

Symbolic Gibbs Fractional Polynomial
A large range of piecewise

algebraic models

Reflective HMC Differentiable Linear
High dimensional truncated

models

• In Chapter 6, we presented our third and last inference tool that unlike the pre-
vious two contributions, is based on Hamiltonian Monte Carlo. This method,
namely reflective Hamiltonian Monte Carlo (RHMC) is motivated by the reflec-
tion and refraction of light (and other physical systems) when encountering a
sudden change in the level of potential energy. RHMC is not based on any a
priori assumption on the topology of the graphical model and (as long as the
gradient vectors of potential energies can be computed or approximated) is not
restricted to any family of potential functions. The only limitation is that the par-
titioning boundaries should be affine. In our experimental models, regardless of
the tuning parameters, RHMC outperformed the baseline and it was much less
sensitive to tuning. Particularly in high dimensional models, the superiority of
RHMC over the baseline was distinct. The reason is that in high dimensions,
most of the density mass is placed near the outer borders of the distribution.
In these models, reflection is an effective mechanism that prevents the sampler
from being lost in the immensity of the 0-probability ambient space.

• The case studies presented in Chapters 1, 4, 5 and 6 demonstrate many scenar-
ios where the probabilistic models are intrinsically piecewise continuous. These
models can appear in diverse contexts, from interactions with humans (i.e. as
in the preference learning framework) to models with conditional statements
(i.e. probabilistic programming) and from models that require random variable
transformations (i.e. inference conditioned on observed functions of random
variables) to intrinsic deterministic constraints that lead to truncated distribu-
tions.

• Our experimental results in different chapters overall indicate that the perfor-
mance of the traditional MCMC based inference methods on piecewise contin-
uous models is typically poor and in some cases extremely unsatisfactory and
therefore, advocate the importance of inference methods that are in particular
motivated and designed for piecewise continuous models.
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7.2 Future work

While this thesis addresses the problem of sampling from piecewise smooth density
functions, there are many unexplored areas for future research. Here we briefly dis-
cuss a few potential directions of research:

• Utilizing the proposed inference tools in new application domains. In Sec-
tion 1.1 we motivated the importance of inference on piecewise models by in-
troducing several application domains where the model is intrinsically piece-
wise continuous. So far, our proposed inference tools are only applied to a few
such models. A future direction of research can be utilizing these tools on other
relevant domains. Two fields where our tools can potentially outperform other
samplers are:

– Reasoning under constraints. In many fields, the set of possible outcomes is
confined by hard constraints. These constraints are often modeled by trun-
cated or bounded support distributions. For instance, in economics, the
consumer’s choice set is constrained by income constraints [Gossen 1983;
Samuelson 1966] and/or non-disposable time constraints are imposed on
the system [Steedman 2003] . Our proposed tools are viable candidates for
effective probabilistic inference on bounded support models. In particu-
lar, we predict that due to the reasons mentioned in Section 6.6.2, in high
dimensional truncated models, probabilistic inference can be carried out
effectively using reflective Hamiltonian Monte Carlo.

– Probabilistic programming. An important and highly popular application of
piecewise distributions is probabilistic programming (PP). This domain is
not fully covered by thesis and may be dealt with in future work.

• Combination of augmented Gibbs and symbolic Gibbs samplers. The Gibbs
sampling based tools proposed in Chapters 4 and 5 tackle the problem of in-
ference from very different view points. They can potentially be combined to
create a sampler that benefits from the capabilities of both of them. Otherwise
stated, the combined sampler may simultaneously use augmented Gibbs to re-
duce the number of target partitions that contribute to the formation of CDF
functions required in each step of Gibbs sampling while these CDFs are already
computed symbolically via symbolic Gibbs technique and it is only required that
we instantiate them per sample. A major challenge in this way is as follows: In
each step of the augmented Gibbs sampling, different combinations of auxil-
iary variables may be chosen for blocked sampling (and therefore collapsed). To
combine augmented Gibbs and symbolic Gibbs, for any potential combination
of collapsed (augmented) variables, a distinct symbolic CDF should be com-
puted and stored. This rapidly becomes intractable and contradicts the reason
augmented Gibbs sampling was introduced in the first place. A potential solu-
tion is to compute the symbolic CDFs lazily and as required. Since due to the
topology of the neighboring regions many combinations of the auxiliary vari-
ables never collapse together, such a strategy may preserve the advantages of
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both augmented and symbolic Gibbs samplers. Nonetheless, this prediction has
to be verified by experimental results.

• Expanding the application domain of symbolic Gibbs by utilizing the under-
lying techniques of CAS, ATP and SMT systems. Symbolic Gibbs sampling
can only by applied to a subset (PPF*⊂ PPF) of polynomial piecewise fractional
functions which have properties that guarantee the existence of easy-to-compute
closed-form integrals (see Section 5.4.3). By utilizing more advanced symbolic
integration techniques of computer algebra systems (CASs) (see Section 3.4.1) in
future we may be able to apply this sampler to a larger subset of PPF family. On
the other hand, by using CAS polynomial factorization techniques, we may be
able to simplify (or approximate) PPFs that are not originally in PPF* form into
such forms. Finally, by using automated theorem proving (ATP) or satisfiabil-
ity modulo theory (SMT) techniques (respectively introduced in Sections 3.4.2
and 3.4.3) we may be able to prune out unsatisfiable partitions and increase the
performance of symbolic Gibbs sampling.

• Representing piecewise functions with alternative data structures. Through-
out, the implementation of piecewise functions were based on extended alge-
braic decision diagram (XADD) data structure (introduced in Section 3.3.3) which
is the simplest and the most natural choice. At the moment, it is unknown to us
whether in the context of (approximate) probabilistic reasoning the use of al-
ternative structures such as edge-valued decision diagrams (introduced in Sec-
tion 3.3.4) is justified or not. Keeping in mind the latter family of diagrams (most
notably, AADDs briefly introduced in Section 3.3.4.5) are capable of represent-
ing additive and multiplicative structures in compact forms, this issue is worth
being investigated in future works. Nonetheless, AADDs and EVBDDs are only
suitable for representation of discrete functions and the extension to (piecewise)
continuous forms is non-obvious.

• Inference conditioned on observed piecewise functions. The framework intro-
duced in Chapter 5 can be generalized to handle piecewise observed functions
such as abs(X) or max(X, Y). This is not emphasized in this thesis in detail
and should be considered an avenue of further research. The basic idea can be
illustrated by the following example.

Consider the problem of taking samples from p(x, y | z = 5) where

p(z) = δ(max(x, y)) := δ(I[x ≥ y] · x + I[x < y] · y)

(which is clearly piecewise.) It is not hard to show that

p(x, y | z = 5) ∝ I[x ≥ y] · δ(x = 5) · p(X = x, Y = y)

+ I[x < y] · δ(y = 5) · p(X = x, Y = y) (7.1)

In this example, it can be seen than Dirac deltas cannot be eliminated via marginaliza-
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tion of either x or y because each of these variables appears in a delta function. However,
as we will see shortly, the problem of taking samples from p(x, y | z = 5) in equa-
tion (7.1) can be converted to the problem of taking samples from p̂(v, w), defined as
follows:

p̂(v, w) := I[v ≥ w] · δ(v = 5) · p(X = v, Y = w)

+ I[w < v] · δ(v = 5) · p(X = w, Y = v) (7.2)

Formula (7.2) is created from (7.1) via substituting x and y by v and w in its first term
while substituting them with w and v in the second term. Now, to eliminate Dirac deltas
from (7.2), we simply marginalize v:

p̂(w) := I[5 ≥ w] · p(X = 5, Y = w) + I[w < 5] · p(X = w, Y = 5)

= I[w < 5] ·
(

p(X = 5, Y = w) + p(X = w, Y = 5)
)

(7.3)

Let w(1) be a sample taken from p̂(w). Using the technique introduced in Section 5.3.1.2
we reconstruct a sample for the original distribution. More specifically, with probability,

p(X = 5, Y = w(1))

p(X = 5, Y = w(1)) + p(X = w(1), Y = 5)

the sample is associated with the first term (therefore, (x = 5, y = w(1)) is returned
for the original density (7.1)) otherwise it is associated with the second term and (x =
w(1), y = 5) is the reconstructed sample for density (7.1).

The tricks used in this example can be generalized to a much larger scope.

• Generalizing inference conditioned on observed functions. In Chapter 5, we
conditioned on functions of random variables. Such observations were consid-
ered to be the limit of measurements with normal noise where the noise variance
tends to zero. The limiting processes had to be defined within the model via de-
terministic potential functions. This was necessary since as illustrated and argued
in Section 5.3.2, different limiting processes can lead to different results. If the
model designer is aware of the nature of measurements involved in the process
of observation, such an assumption seems reasonable. On the other hand, in
case the nature of measurement is unknown, it makes sense to define the col-
lapsing mechanism in a way that it remains invariant w.r.t. the limiting process.
To address similar problems, in Geometric measure theory, k-dimensional Jacobian
is defined as the norm of the derivative matrix (i.e. matrix of partial derivatives
a.k.a. Jacobian matrix) [Hubbard and Hubbard 2007; Diaconis et al. 2013] Due
to lack of closed form integrals, this path of research cannot by combined with
symbolic Gibbs. Nonetheless, its combination with HMC seems promising and
may be pursued in future.

• Reflective Hamiltonian Monte Carlo on models with nonlinear boundaries.
The volume preservation property proved in Chapter 6 only holds for the case
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the boundaries of the model partitions are linear. Investigation of the validity
of the volume conservation theorem for the case the model constraints are non-
linear can be a future work. It might be the case that higher order boundaries
behave like concave/convex mirrors and modify the volume via magnification
of space. However, this is only a speculation that in future should be either
verified or refuted.

7.3 Conclusion

This thesis highlight several applications of probabilistic inference on graphical mod-
els that are intrinsically piecewise continuous. Scalable, accurate inference in this im-
portant class of models has largely been overlooked prior to the research directions
initiated in this thesis. Our contribution is to propose three sampling-based algo-
rithms that are designed to conduct asymptotically unbiased inference on the afore-
mentioned family of models. Our experimental results show that on piecewise target
models, the proposed methods outperform the existing MCMC samplers. The thesis
opens up many opportunities for further refinement and extension that should only
further improve inference tools for this important but overlooked class of graphical
models.
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